Suppr超能文献

线粒体在轴突发育和再生中的作用。

The role of mitochondria in axon development and regeneration.

机构信息

Department of Neuroscience, Temple University, Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140.

Shriners Hospitals Pediatric Research Center, Temple University, Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140.

出版信息

Dev Neurobiol. 2018 Mar;78(3):221-237. doi: 10.1002/dneu.22546. Epub 2017 Oct 24.

Abstract

Mitochondria are dynamic organelles that undergo transport, fission, and fusion. The three main functions of mitochondria are to generate ATP, buffer cytosolic calcium, and generate reactive oxygen species. A large body of evidence indicates that mitochondria are either primary targets for neurological disease states and nervous system injury, or are major contributors to the ensuing pathologies. However, the roles of mitochondria in the development and regeneration of axons have just begun to be elucidated. Advances in the understanding of the functional roles of mitochondria in neurons had been largely impeded by insufficient knowledge regarding the molecular mechanisms that regulate mitochondrial transport, stalling, fission/fusion, and a paucity of approaches to image and analyze mitochondria in living axons at the level of the single mitochondrion. However, technical advances in the imaging and analysis of mitochondria in living neurons and significant insights into the mechanisms that regulate mitochondrial dynamics have allowed the field to advance. Mitochondria have now been attributed important roles in the mechanism of axon extension, regeneration, and axon branching. The availability of new experimental tools is expected to rapidly increase our understanding of the functions of axonal mitochondria during both development and later regenerative attempts. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 221-237, 2018.

摘要

线粒体是具有动态特征的细胞器,可发生转运、裂变和融合。线粒体的三个主要功能是生成 ATP、缓冲细胞质中的钙离子和生成活性氧物质。大量证据表明,线粒体要么是神经疾病状态和神经系统损伤的主要靶标,要么是随后发生的病理变化的主要贡献者。然而,线粒体在轴突发育和再生中的作用才刚刚开始被阐明。由于对调节线粒体转运、停滞、裂变/融合的分子机制缺乏足够的了解,对神经元中线粒体功能作用的理解进展缓慢,这阻碍了技术的进步,使我们难以在活轴突中单线粒体水平上对线粒体进行成像和分析。然而,活神经元中线粒体的成像和分析技术的进步,以及对调节线粒体动力学的机制的深入了解,使得该领域取得了进展。线粒体在轴突延伸、再生和轴突分支的机制中被赋予了重要的作用。新的实验工具的出现,有望迅速提高我们对发育过程中和后续再生尝试中轴突线粒体功能的理解。©2017 年 Wiley 期刊,Inc. 发育神经生物学 78:221-237,2018 年。

相似文献

1
The role of mitochondria in axon development and regeneration.
Dev Neurobiol. 2018 Mar;78(3):221-237. doi: 10.1002/dneu.22546. Epub 2017 Oct 24.
2
Mitochondrial behavior during axon regeneration/degeneration in vivo.
Neurosci Res. 2019 Feb;139:42-47. doi: 10.1016/j.neures.2018.08.014. Epub 2018 Sep 1.
3
The bioenergetics of neuronal morphogenesis and regeneration: Frontiers beyond the mitochondrion.
Dev Neurobiol. 2020 Jul;80(7-8):263-276. doi: 10.1002/dneu.22776. Epub 2020 Sep 27.
4
Mitochondria Localize to Injured Axons to Support Regeneration.
Neuron. 2016 Dec 21;92(6):1308-1323. doi: 10.1016/j.neuron.2016.11.025.
5
Neuronal Intrinsic Regenerative Capacity: The Impact of Microtubule Organization and Axonal Transport.
Dev Neurobiol. 2018 Oct;78(10):952-959. doi: 10.1002/dneu.22602. Epub 2018 May 8.
6
The Molecular Interplay between Axon Degeneration and Regeneration.
Dev Neurobiol. 2018 Oct;78(10):978-990. doi: 10.1002/dneu.22627. Epub 2018 Jul 18.
7
The axonal endoplasmic reticulum: One organelle-many functions in development, maintenance, and plasticity.
Dev Neurobiol. 2018 Mar;78(3):181-208. doi: 10.1002/dneu.22560. Epub 2017 Nov 19.
9
CSPGs inhibit axon branching by impairing mitochondria-dependent regulation of actin dynamics and axonal translation.
Dev Neurobiol. 2017 Apr;77(4):454-473. doi: 10.1002/dneu.22420. Epub 2016 Aug 2.
10
AMP-activated protein kinase mediates activity-dependent axon branching by recruiting mitochondria to axon.
Dev Neurobiol. 2014 Jun;74(6):557-73. doi: 10.1002/dneu.22149. Epub 2013 Nov 29.

引用本文的文献

1
Mitochondrial fission controls astrocyte morphogenesis and organization in the cortex.
J Cell Biol. 2025 Oct 6;224(10). doi: 10.1083/jcb.202410130. Epub 2025 Sep 3.
2
3
Spinal motor neuron development and metabolism are transcriptionally regulated by nuclear factor IA.
Sci Adv. 2025 Aug;11(31):eadu3346. doi: 10.1126/sciadv.adu3346. Epub 2025 Aug 1.
4
Mitochondrial Transplantation: A Novel Therapeutic Approach for Treating Diseases.
MedComm (2020). 2025 Jun 11;6(6):e70253. doi: 10.1002/mco2.70253. eCollection 2025 Jun.
5
SARM1: The Checkpoint of Axonal Degeneration in the Nervous System Disorders.
Mol Neurobiol. 2025 Mar 17. doi: 10.1007/s12035-025-04835-3.
6
DLK-dependent axonal mitochondrial fission drives degeneration after axotomy.
Nat Commun. 2024 Dec 30;15(1):10806. doi: 10.1038/s41467-024-54982-9.
7
The transcriptional landscape of the developing chick trigeminal ganglion.
Dev Biol. 2025 Apr;520:108-116. doi: 10.1016/j.ydbio.2024.12.013. Epub 2024 Dec 22.
8
Mitochondrial fission controls astrocyte morphogenesis and organization in the cortex.
bioRxiv. 2024 Oct 22:2024.10.22.619706. doi: 10.1101/2024.10.22.619706.
9
Exogenous Mitochondrial Transplantation Facilitates the Recovery of Autologous Nerve Grafting in Repairing Nerve Defects.
Cell Transplant. 2024 Jan-Dec;33:9636897241291278. doi: 10.1177/09636897241291278.

本文引用的文献

1
Nuclear-Encoded Mitochondrial mRNAs: A Powerful Force in Axonal Growth and Development.
Neuroscientist. 2018 Apr;24(2):142-155. doi: 10.1177/1073858417714225. Epub 2017 Jun 14.
2
It takes a village to raise a branch: Cellular mechanisms of the initiation of axon collateral branches.
Mol Cell Neurosci. 2017 Oct;84:36-47. doi: 10.1016/j.mcn.2017.03.007. Epub 2017 Mar 27.
3
Calcium Transport and Signaling in Mitochondria.
Compr Physiol. 2017 Mar 16;7(2):623-634. doi: 10.1002/cphy.c160013.
4
The Interplay of Axonal Energy Homeostasis and Mitochondrial Trafficking and Anchoring.
Trends Cell Biol. 2017 Jun;27(6):403-416. doi: 10.1016/j.tcb.2017.01.005. Epub 2017 Feb 20.
5
The endoplasmic reticulum-mitochondria coupling in health and disease: Molecules, functions and significance.
Cell Calcium. 2017 Mar;62:1-15. doi: 10.1016/j.ceca.2017.01.003. Epub 2017 Jan 12.
6
Mitochondria Localize to Injured Axons to Support Regeneration.
Neuron. 2016 Dec 21;92(6):1308-1323. doi: 10.1016/j.neuron.2016.11.025.
7
The Mammalian-Specific Protein Armcx1 Regulates Mitochondrial Transport during Axon Regeneration.
Neuron. 2016 Dec 21;92(6):1294-1307. doi: 10.1016/j.neuron.2016.10.060.
8
A neuronal network of mitochondrial dynamics regulates metastasis.
Nat Commun. 2016 Dec 19;7:13730. doi: 10.1038/ncomms13730.
9
Mitochondrial fission and fusion.
Biochem Soc Trans. 2016 Dec 15;44(6):1725-1735. doi: 10.1042/BST20160129.
10
Adaptive responses of neuronal mitochondria to bioenergetic challenges: Roles in neuroplasticity and disease resistance.
Free Radic Biol Med. 2017 Jan;102:203-216. doi: 10.1016/j.freeradbiomed.2016.11.045. Epub 2016 Nov 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验