Suppr超能文献

独木难成林:轴突侧支起始的细胞机制。

It takes a village to raise a branch: Cellular mechanisms of the initiation of axon collateral branches.

机构信息

Shriners Pediatric Research Center, Temple University, Department of Anatomy and Cell Biology, 3500 North Broad St, Philadelphia, PA 19140, United States.

Shriners Pediatric Research Center, Temple University, Department of Anatomy and Cell Biology, 3500 North Broad St, Philadelphia, PA 19140, United States.

出版信息

Mol Cell Neurosci. 2017 Oct;84:36-47. doi: 10.1016/j.mcn.2017.03.007. Epub 2017 Mar 27.

Abstract

The formation of axon collateral branches from the pre-existing shafts of axons is an important aspect of neurodevelopment and the response of the nervous system to injury. This article provides an overview of the role of the cytoskeleton and signaling mechanisms in the formation of axon collateral branches. Both the actin filament and microtubule components of the cytoskeleton are required for the formation of axon branches. Recent work has begun to shed light on how these two elements of the cytoskeleton are integrated by proteins that functionally or physically link the cytoskeleton. While a number of signaling pathways have been determined as having a role in the formation of axon branches, the complexity of the downstream mechanisms and links to specific signaling pathways remain to be fully determined. The regulation of intra-axonal protein synthesis and organelle function are also emerging as components of signal-induced axon branching. Although much has been learned in the last couple of decades about the mechanistic basis of axon branching we can look forward to continue elucidating this complex biological phenomenon with the aim of understanding how multiple signaling pathways, cytoskeletal regulators and organelles are coordinated locally along the axon to give rise to a branch.

摘要

轴突侧支分支的形成是神经发育和神经系统对损伤反应的一个重要方面。本文概述了细胞骨架和信号机制在轴突侧支分支形成中的作用。细胞骨架的肌动蛋白丝和微管成分对于轴突分支的形成都是必需的。最近的工作开始揭示这两种细胞骨架成分如何通过将细胞骨架功能或物理上连接起来的蛋白质进行整合。虽然已经确定了许多信号通路在轴突分支形成中具有作用,但下游机制的复杂性和与特定信号通路的联系仍有待完全确定。轴内蛋白质合成和细胞器功能的调节也正在成为信号诱导轴突分支的组成部分。尽管在过去的几十年中已经了解了轴突分支的机械基础,但我们可以期待继续阐明这一复杂的生物学现象,目的是了解如何沿着轴突局部协调多个信号通路、细胞骨架调节剂和细胞器,从而产生一个分支。

相似文献

1
It takes a village to raise a branch: Cellular mechanisms of the initiation of axon collateral branches.
Mol Cell Neurosci. 2017 Oct;84:36-47. doi: 10.1016/j.mcn.2017.03.007. Epub 2017 Mar 27.
3
The cytoskeletal and signaling mechanisms of axon collateral branching.
Dev Neurobiol. 2011 Mar;71(3):201-20. doi: 10.1002/dneu.20852.
5
CSPGs inhibit axon branching by impairing mitochondria-dependent regulation of actin dynamics and axonal translation.
Dev Neurobiol. 2017 Apr;77(4):454-473. doi: 10.1002/dneu.22420. Epub 2016 Aug 2.
6
Actin filament-microtubule interactions in axon initiation and branching.
Brain Res Bull. 2016 Sep;126(Pt 3):300-310. doi: 10.1016/j.brainresbull.2016.07.013. Epub 2016 Aug 1.
7
Drebrin coordinates the actin and microtubule cytoskeleton during the initiation of axon collateral branches.
Dev Neurobiol. 2016 Oct;76(10):1092-110. doi: 10.1002/dneu.22377. Epub 2016 Jan 25.
8
Involvement of Rho-family GTPases in axon branching.
Small GTPases. 2014;5:e27974. doi: 10.4161/sgtp.27974. Epub 2014 Mar 11.
9
Septin-driven coordination of actin and microtubule remodeling regulates the collateral branching of axons.
Curr Biol. 2012 Jun 19;22(12):1109-15. doi: 10.1016/j.cub.2012.04.019. Epub 2012 May 17.
10
Axon branching requires interactions between dynamic microtubules and actin filaments.
J Neurosci. 2001 Dec 15;21(24):9757-69. doi: 10.1523/JNEUROSCI.21-24-09757.2001.

引用本文的文献

1
A gentle palette of plasma membrane dyes.
Proc Natl Acad Sci U S A. 2025 Jul 22;122(29):e2504879122. doi: 10.1073/pnas.2504879122. Epub 2025 Jul 15.
4
Mechanisms of brain overgrowth in autism spectrum disorder with macrocephaly.
Front Neurosci. 2025 Jun 6;19:1586550. doi: 10.3389/fnins.2025.1586550. eCollection 2025.
6
Nerve growth factor signaling tunes axon maintenance protein abundance and kinetics of Wallerian degeneration.
Mol Biol Cell. 2025 Apr 1;36(4):ar46. doi: 10.1091/mbc.E25-01-0005. Epub 2025 Feb 19.
8
Optogenetic control of receptor-mediated growth cone dynamics in neurons.
Mol Biol Cell. 2025 Feb 1;36(2):br5. doi: 10.1091/mbc.E23-07-0268. Epub 2024 Dec 20.
10
Putting the brakes on axonal branching.
Trends Neurosci. 2024 Jul;47(7):475-477. doi: 10.1016/j.tins.2024.05.001. Epub 2024 May 16.

本文引用的文献

1
Kinesin-1 sorting in axons controls the differential retraction of arbor terminals.
J Cell Sci. 2016 Sep 15;129(18):3499-510. doi: 10.1242/jcs.183806. Epub 2016 Aug 5.
2
Actin filament-microtubule interactions in axon initiation and branching.
Brain Res Bull. 2016 Sep;126(Pt 3):300-310. doi: 10.1016/j.brainresbull.2016.07.013. Epub 2016 Aug 1.
3
CSPGs inhibit axon branching by impairing mitochondria-dependent regulation of actin dynamics and axonal translation.
Dev Neurobiol. 2017 Apr;77(4):454-473. doi: 10.1002/dneu.22420. Epub 2016 Aug 2.
4
SDF‑1/CXCR4 axis induces apoptosis of human degenerative nucleus pulposus cells via the NF‑κB pathway.
Mol Med Rep. 2016 Jul;14(1):783-9. doi: 10.3892/mmr.2016.5341. Epub 2016 May 24.
5
Cytoskeletal control of axon domain assembly and function.
Curr Opin Neurobiol. 2016 Aug;39:116-21. doi: 10.1016/j.conb.2016.05.001. Epub 2016 May 18.
8
Regulation of global and specific mRNA translation by the mTOR signaling pathway.
Translation (Austin). 2015 Feb 2;3(1):e983402. doi: 10.4161/21690731.2014.983402. eCollection 2015 Jan-Jun.
9
The GSK3-MAP1B pathway controls neurite branching and microtubule dynamics.
Mol Cell Neurosci. 2016 Apr;72:9-21. doi: 10.1016/j.mcn.2016.01.001. Epub 2016 Jan 8.
10
Drebrin coordinates the actin and microtubule cytoskeleton during the initiation of axon collateral branches.
Dev Neurobiol. 2016 Oct;76(10):1092-110. doi: 10.1002/dneu.22377. Epub 2016 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验