Suppr超能文献

L-半胱氨酸产生的过硫化物使酪氨酸转氨酶失活。对具有半胱氨酸氧化酶活性和γ-胱硫醚酶的蛋白质的需求。

Persulfide generated from L-cysteine inactivates tyrosine aminotransferase. Requirement for a protein with cysteine oxidase activity and gamma-cystathionase.

作者信息

Hargrove J L

机构信息

Department of Anatomy and Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322.

出版信息

J Biol Chem. 1988 Nov 25;263(33):17262-9.

PMID:2903161
Abstract

Liver cytosols contain factors that produce an inhibitor of tyrosine aminotransferase and other enzymes when incubated with L-cysteine or L-cystine. Cystine-dependent inactivation was caused by cystathionase and required pyridoxal 5'-phosphate, but a second protein was needed to reconstitute cysteine-dependent inactivation. A cytosolic protein was isolated that oxidized free cysteine and brought about inactivation of tyrosine aminotransferase when coincubated with cystathionase. Hematin also oxidized cysteine, which led to cysteine-dependent inactivation of tyrosine aminotransferase in the presence of cystathionase. The inactivation of tyrosine aminotransferase involved three steps: initial oxidation of cysteine to form cystine; desulfuration of cystine catalyzed by cystathionase to form the persulfide, thiocysteine; and reaction of thiocysteine (or products of its decomposition) with proteins to form protein-bound sulfane. Since dithiothreitol reactivated tyrosine aminotransferase, the sulfane probably inactivated the enzyme by oxidation of thiol groups. The present results do not indicate whether the cysteine oxidase activity is enzymatic nor do they prove which form of polysulfide inactivates tyrosine aminotransferase. Reduced glutathione greatly slowed the rates at which sulfane accumulated and at which tyrosine aminotransferase was inactivated. Incubation of DL-cystathionine with liver cytosols led to formation of cysteine, which was oxidized and cleaved to form persulfide, and caused inactivation of tyrosine aminotransferase. Thus, sulfane sulfur that is generated by an enzyme of the transulfuration pathway inactivates a transaminase by nonselective oxidation of enzyme-bound thiol groups.

摘要

肝胞质溶胶含有一些因子,当与L-半胱氨酸或L-胱氨酸一起孵育时,这些因子会产生酪氨酸转氨酶和其他酶的抑制剂。胱氨酸依赖性失活是由胱硫醚酶引起的,并且需要磷酸吡哆醛5'-磷酸,但需要第二种蛋白质来重建半胱氨酸依赖性失活。分离出一种胞质溶胶蛋白,它能氧化游离半胱氨酸,并在与胱硫醚酶共同孵育时导致酪氨酸转氨酶失活。血红素也能氧化半胱氨酸,这在胱硫醚酶存在的情况下导致酪氨酸转氨酶的半胱氨酸依赖性失活。酪氨酸转氨酶的失活涉及三个步骤:半胱氨酸首先氧化形成胱氨酸;胱硫醚酶催化胱氨酸脱硫形成过硫化物硫代半胱氨酸;硫代半胱氨酸(或其分解产物)与蛋白质反应形成与蛋白质结合的次硫酸。由于二硫苏糖醇能使酪氨酸转氨酶重新激活,次硫酸可能通过氧化巯基使该酶失活。目前的结果并未表明半胱氨酸氧化酶活性是否具有酶促性,也未证明是哪种多硫化物形式使酪氨酸转氨酶失活。还原型谷胱甘肽大大减慢了次硫酸积累的速率以及酪氨酸转氨酶失活的速率。将DL-胱硫醚与肝胞质溶胶一起孵育会导致半胱氨酸的形成,半胱氨酸被氧化并裂解形成过硫化物,并导致酪氨酸转氨酶失活。因此,转硫途径的一种酶产生的次硫酸硫通过非选择性氧化酶结合的巯基使转氨酶失活。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验