Suppr超能文献

黄铁矿去除汞的分子机制研究

Molecular-level insights into mercury removal mechanism by pyrite.

机构信息

State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

出版信息

J Hazard Mater. 2018 Feb 15;344:104-112. doi: 10.1016/j.jhazmat.2017.10.011. Epub 2017 Oct 7.

Abstract

Natural pyrite (FeS) has been regarded as a kind of potential sorbents to control mercury emission from coal-fired power plants because of its low cost and high affinity between mercury and FeS. Theoretical investigations based on density functional theory (DFT) were carried out to discern mercury adsorption, reaction and desorption mechanisms over pyrite surface. DFT calculation results indicate that Hg adsorption on FeS(100) and FeS(110) surfaces is dominated by physisorption and chemisorption mechanisms, respectively. Mercury atom interacts strongly with Fe atom on FeS(110) surface through the atomic orbital hybridization and overlap. HgS is chemically adsorbed on FeS(100) and FeS(110) surfaces. Electron density difference analysis implies that the significant charge accumulation around sulfur atom of adsorbed HgS molecule is closely associated with the strong interaction between gaseous HgS and pyrite surface. The reaction pathway leading to the formation of gaseous HgS is a three-step process: Hg→Hg(ads)→HgS(ads)→HgS. In the second step, the energy barrier of diatomic surface reaction between adsorbed Hg and S monomer is approximately 17kJ/mol. The third step is an endothermic process which requires an external energy of about 414.60kJ/mol to desorb the formed HgS, and is the rate-determining step.

摘要

天然黄铁矿 (FeS) 因其成本低且与 FeS 之间具有高亲和力而被认为是一种潜在的吸附剂,可以控制燃煤电厂的汞排放。本文基于密度泛函理论 (DFT) 进行了理论研究,以辨别黄铁矿表面上的汞吸附、反应和脱附机制。DFT 计算结果表明,Hg 在 FeS(100) 和 FeS(110) 表面上的吸附主要由物理吸附和化学吸附机制控制。Hg 原子通过原子轨道杂化和重叠与 FeS(110)表面上的 Fe 原子强烈相互作用。HgS 在 FeS(100)和 FeS(110)表面上化学吸附。电子密度差分析表明,吸附 HgS 分子中硫原子周围的显著电荷积累与气态 HgS 和黄铁矿表面之间的强相互作用密切相关。形成气态 HgS 的反应途径是一个三步过程:Hg→Hg(ads)→HgS(ads)→HgS。在第二步中,吸附 Hg 和 S 单体之间的双原子表面反应的能垒约为 17kJ/mol。第三步是一个吸热过程,需要大约 414.60kJ/mol 的外部能量才能解吸形成的 HgS,这是速率决定步骤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验