Suppr超能文献

下一代微生物风险评估:组学数据在暴露评估中的潜力。

Next generation of microbiological risk assessment: Potential of omics data for exposure assessment.

机构信息

Laboratory of Food Microbiology, Wageningen University, PO Box 17, 6700, AA, Wageningen, The Netherlands.

Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK.

出版信息

Int J Food Microbiol. 2018 Dec 20;287:18-27. doi: 10.1016/j.ijfoodmicro.2017.10.006. Epub 2017 Oct 4.

Abstract

In food safety and public health risk evaluations, microbiological exposure assessment plays a central role as it provides an estimation of both the likelihood and the level of the microbial hazard in a specified consumer portion of food and takes microbial behaviour into account. While until now mostly phenotypic data have been used in exposure assessment, mechanistic cellular information, obtained using omics techniques, will enable the fine tuning of exposure assessments to move towards the next generation of microbiological risk assessment. In particular, metagenomics can help in characterizing the food and factory environment microbiota (endogenous microbiota and potentially pathogens) and the changes over time under the environmental conditions associated with processing, preservation and storage. The difficulty lies in moving up to a quantitative exposure assessment, because the development of models that enable the prediction of dynamics of pathogens in a complex food ecosystem is still in its infancy in the food safety domain. In addition, collecting and storing the environmental data (metadata) required to inform the models has not yet been organised at a large scale. In contrast, progress in biomarker identification and characterization has already opened the possibility of making qualitative or even quantitative connection between process and formulation conditions and microbial responses at the strain level. In term of modelling approaches, without changing radically the usual model structure, changes in model inputs are expected: instead of (or as well as) building models upon phenotypic characteristics such as for example minimal temperature where growth is expected, exposure assessment models could use biomarker response intensity as inputs. These new generations of strain-level models will bring an added value in predicting the variability in pathogen behaviour. Altogether, these insights based upon omics techniques will increase our (quantitative) knowledge on pathogenic strains and consequently will reduce our uncertainty; the exposure assessment of a specific combination of pathogen and food will be then more accurate. This progress will benefit the whole community of safety assessors and research scientists from academia, regulatory agencies and industry.

摘要

在食品安全和公共卫生风险评估中,微生物暴露评估起着核心作用,因为它可以估计特定消费者食品部分中微生物危害的可能性和水平,并考虑微生物的行为。虽然到目前为止,暴露评估主要使用表型数据,但使用组学技术获得的机制细胞信息将使暴露评估能够朝着下一代微生物风险评估方向进行微调。特别是,宏基因组学可以帮助描述食品和工厂环境中的微生物群落(内源性微生物群落和潜在的病原体),以及在与加工、保存和储存相关的环境条件下随时间的变化。困难在于如何进行定量暴露评估,因为在食品安全领域,开发能够预测复杂食品生态系统中病原体动态的模型仍处于起步阶段。此外,收集和存储用于告知模型所需的环境数据(元数据)尚未在大规模上进行组织。相比之下,生物标志物的识别和表征方面的进展已经为在工艺和配方条件与菌株水平的微生物反应之间建立定性甚至定量联系提供了可能性。在建模方法方面,预计模型输入会发生变化,而不会从根本上改变通常的模型结构:暴露评估模型可以使用生物标志物响应强度作为输入,而不是(或除了)基于表型特征(例如预期生长的最小温度)构建模型。这些新一代基于菌株的模型将在预测病原体行为的可变性方面带来附加值。总之,基于组学技术的这些见解将增加我们对致病性菌株的(定量)了解,从而降低我们的不确定性;然后,对特定病原体和食品的组合进行暴露评估将更加准确。这一进展将使学术界、监管机构和行业的整个安全评估人员和研究科学家群体受益。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验