Chen Yunxiao, Li Xiaoou, Liu Jingchen, Xu Gongjun, Ying Zhiliang
Emory University, Atlanta, GA, USA.
University of Minnesota, Minneapolis, USA.
Appl Psychol Meas. 2017;41(8):579-599. doi: 10.1177/0146621617692977. Epub 2017 Feb 1.
Large-scale assessments are supported by a large item pool. An important task in test development is to assign items into scales that measure different characteristics of individuals, and a popular approach is cluster analysis of items. Classical methods in cluster analysis, such as the hierarchical clustering, K-means method, and latent-class analysis, often induce a high computational overhead and have difficulty handling missing data, especially in the presence of high-dimensional responses. In this article, the authors propose a spectral clustering algorithm for exploratory item cluster analysis. The method is computationally efficient, effective for data with missing or incomplete responses, easy to implement, and often outperforms traditional clustering algorithms in the context of high dimensionality. The spectral clustering algorithm is based on graph theory, a branch of mathematics that studies the properties of graphs. The algorithm first constructs a graph of items, characterizing the similarity structure among items. It then extracts item clusters based on the graphical structure, grouping similar items together. The proposed method is evaluated through simulations and an application to the revised Eysenck Personality Questionnaire.
大规模评估由一个大型项目库提供支持。测试开发中的一项重要任务是将项目分配到衡量个体不同特征的量表中,一种常用的方法是对项目进行聚类分析。聚类分析中的经典方法,如层次聚类、K均值法和潜在类别分析,往往会带来较高的计算开销,并且在处理缺失数据方面存在困难,尤其是在存在高维响应的情况下。在本文中,作者提出了一种用于探索性项目聚类分析的谱聚类算法。该方法计算效率高,对具有缺失或不完整响应的数据有效,易于实现,并且在高维情况下通常优于传统聚类算法。谱聚类算法基于图论,图论是研究图的性质的数学分支。该算法首先构建一个项目图,表征项目之间的相似性结构。然后根据图形结构提取项目聚类,将相似的项目归为一组。通过模拟和对修订后的艾森克人格问卷的应用对所提出的方法进行了评估。