Suppr超能文献

基于谱图聚类的探索性项目分类

Exploratory Item Classification Via Spectral Graph Clustering.

作者信息

Chen Yunxiao, Li Xiaoou, Liu Jingchen, Xu Gongjun, Ying Zhiliang

机构信息

Emory University, Atlanta, GA, USA.

University of Minnesota, Minneapolis, USA.

出版信息

Appl Psychol Meas. 2017;41(8):579-599. doi: 10.1177/0146621617692977. Epub 2017 Feb 1.

Abstract

Large-scale assessments are supported by a large item pool. An important task in test development is to assign items into scales that measure different characteristics of individuals, and a popular approach is cluster analysis of items. Classical methods in cluster analysis, such as the hierarchical clustering, K-means method, and latent-class analysis, often induce a high computational overhead and have difficulty handling missing data, especially in the presence of high-dimensional responses. In this article, the authors propose a spectral clustering algorithm for exploratory item cluster analysis. The method is computationally efficient, effective for data with missing or incomplete responses, easy to implement, and often outperforms traditional clustering algorithms in the context of high dimensionality. The spectral clustering algorithm is based on graph theory, a branch of mathematics that studies the properties of graphs. The algorithm first constructs a graph of items, characterizing the similarity structure among items. It then extracts item clusters based on the graphical structure, grouping similar items together. The proposed method is evaluated through simulations and an application to the revised Eysenck Personality Questionnaire.

摘要

大规模评估由一个大型项目库提供支持。测试开发中的一项重要任务是将项目分配到衡量个体不同特征的量表中,一种常用的方法是对项目进行聚类分析。聚类分析中的经典方法,如层次聚类、K均值法和潜在类别分析,往往会带来较高的计算开销,并且在处理缺失数据方面存在困难,尤其是在存在高维响应的情况下。在本文中,作者提出了一种用于探索性项目聚类分析的谱聚类算法。该方法计算效率高,对具有缺失或不完整响应的数据有效,易于实现,并且在高维情况下通常优于传统聚类算法。谱聚类算法基于图论,图论是研究图的性质的数学分支。该算法首先构建一个项目图,表征项目之间的相似性结构。然后根据图形结构提取项目聚类,将相似的项目归为一组。通过模拟和对修订后的艾森克人格问卷的应用对所提出的方法进行了评估。

相似文献

1
Exploratory Item Classification Via Spectral Graph Clustering.基于谱图聚类的探索性项目分类
Appl Psychol Meas. 2017;41(8):579-599. doi: 10.1177/0146621617692977. Epub 2017 Feb 1.
3
Weighted graph cuts without eigenvectors a multilevel approach.无需特征向量的加权图割:一种多级方法。
IEEE Trans Pattern Anal Mach Intell. 2007 Nov;29(11):1944-57. doi: 10.1109/TPAMI.2007.1115.
7
Large-Scale Clustering With Structured Optimal Bipartite Graph.基于结构化最优二分图的大规模聚类
IEEE Trans Pattern Anal Mach Intell. 2023 Aug;45(8):9950-9963. doi: 10.1109/TPAMI.2023.3277532. Epub 2023 Jun 30.
8
Efficient uncertainty minimization for fuzzy spectral clustering.模糊谱聚类的高效不确定性最小化
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Nov;80(5 Pt 2):056705. doi: 10.1103/PhysRevE.80.056705. Epub 2009 Nov 24.

本文引用的文献

2
The Growth Of Cluster Analysis: Tryon, Ward, And Johnson.
Multivariate Behav Res. 1980 Oct 1;15(4):439-58. doi: 10.1207/s15327906mbr1504_4.
4
Item diagnostics in multivariate discrete data.多元离散数据中的项目诊断
Psychol Methods. 2015 Jun;20(2):276-92. doi: 10.1037/a0039015. Epub 2015 Apr 13.
6
Theory of the Self-learning -Matrix.自学习矩阵理论
Bernoulli (Andover). 2013 Nov 1;19(5A):1790-1817. doi: 10.3150/12-BEJ430.
7
Data-Driven Learning of Q-Matrix.基于数据驱动的Q矩阵学习
Appl Psychol Meas. 2012 Oct;36(7):548-564. doi: 10.1177/0146621612456591.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验