Suppr超能文献

无需特征向量的加权图割:一种多级方法。

Weighted graph cuts without eigenvectors a multilevel approach.

作者信息

Dhillon Inderjit S, Guan Yuqiang, Kulis Brian

机构信息

Department of Computer Science, University of Texas at Austin, 1 University Station C0500, Austin, TX 78712-0500, USA.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2007 Nov;29(11):1944-57. doi: 10.1109/TPAMI.2007.1115.

Abstract

A variety of clustering algorithms have recently been proposed to handle data that is not linearly separable; spectral clustering and kernel k-means are two of the main methods. In this paper, we discuss an equivalence between the objective functions used in these seemingly different methods--in particular, a general weighted kernel k-means objective is mathematically equivalent to a weighted graph clustering objective. We exploit this equivalence to develop a fast, high-quality multilevel algorithm that directly optimizes various weighted graph clustering objectives, such as the popular ratio cut, normalized cut, and ratio association criteria. This eliminates the need for any eigenvector computation for graph clustering problems, which can be prohibitive for very large graphs. Previous multilevel graph partitioning methods, such as Metis, have suffered from the restriction of equal-sized clusters; our multilevel algorithm removes this restriction by using kernel k-means to optimize weighted graph cuts. Experimental results show that our multilevel algorithm outperforms a state-of-the-art spectral clustering algorithm in terms of speed, memory usage, and quality. We demonstrate that our algorithm is applicable to large-scale clustering tasks such as image segmentation, social network analysis and gene network analysis.

摘要

最近已经提出了多种聚类算法来处理非线性可分的数据;谱聚类和核k均值是其中两种主要方法。在本文中,我们讨论了这些看似不同的方法中使用的目标函数之间的等价性——特别是,一般加权核k均值目标在数学上等同于加权图聚类目标。我们利用这种等价性开发了一种快速、高质量的多级算法,该算法直接优化各种加权图聚类目标,例如流行的比率切割、归一化切割和比率关联准则。这消除了图聚类问题中任何特征向量计算的需求,对于非常大的图来说,这可能是令人望而却步的。以前的多级图划分方法,如Metis,受到等大小聚类的限制;我们的多级算法通过使用核k均值来优化加权图切割,消除了这种限制。实验结果表明,我们的多级算法在速度、内存使用和质量方面优于一种先进的谱聚类算法。我们证明了我们的算法适用于大规模聚类任务,如图像分割、社交网络分析和基因网络分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验