Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States.
ACS Appl Mater Interfaces. 2017 Nov 8;9(44):39018-39026. doi: 10.1021/acsami.7b11905. Epub 2017 Oct 25.
Visible-light-driven water splitting was investigated in a dye sensitized photoelectrosynthesis cell (DSPEC) based on a photoanode with a phosphonic acid-derivatized donor-π-acceptor (D-π-A) organic chromophore, 1, and the water oxidation catalyst [Ru(bda)(4-O(CH)P(OH)-pyr)], 2, (pyr = pyridine; bda = 2,2'-bipyridine-6,6'-dicarboxylate). The photoanode was prepared by using a layering strategy beginning with the organic dye anchored to an FTO|core/shell electrode, atomic layer deposition (ALD) of a thin layer (<1 nm) of TiO, and catalyst binding through phosphonate linkage to the TiO layer. Device performance was evaluated by photocurrent measurements for core/shell photoanodes, with either SnO or nanoITO core materials, in acetate-buffered, aqueous solutions at pH 4.6 or 5.7. The absolute magnitudes of photocurrent changes with the core material, TiO spacer layer thickness, or pH, observed photocurrents were 2.5-fold higher in the presence of catalyst. The results of transient absorption measurements and DFT calculations show that electron injection by the photoexcited organic dye is ultrafast promoted by electronic interactions enabled by orientation of the dye's molecular orbitals on the electrode surface. Rapid injection is followed by recombination with the oxidized dye which is 95% complete by 1.5 ns. Although chromophore decomposition limits the efficiency of the DSPEC devices toward O production, the flexibility of the strategy presented here offers a new approach to photoanode design.
可见光驱动的水分解在基于具有膦酸衍生给体-π-受体 (D-π-A) 有机发色团 1 和水氧化催化剂 [Ru(bda)(4-O(CH)P(OH)-pyr)],2 的染料敏化光电合成电池 (DSPEC) 中进行了研究,其中 pyr = 吡啶;bda = 2,2'-联吡啶-6,6'-二甲酸酯)。通过从有机染料固定在 FTO|核/壳电极上开始的分层策略制备光阳极,进行原子层沉积 (ALD) 以沉积一层 (<1nm) 的 TiO,然后通过膦酸酯键合将催化剂结合到 TiO 层上。通过在 pH 值为 4.6 或 5.7 的乙酸盐缓冲水溶液中对具有 SnO 或纳米 ITO 核材料的核/壳光阳极进行光电流测量来评估器件性能。观察到的光电流的绝对值随核材料、TiO 间隔层厚度或 pH 值而变化,在存在催化剂的情况下,光电流增加了 2.5 倍。瞬态吸收测量和 DFT 计算的结果表明,通过在电极表面上取向的染料分子轨道的电子相互作用,光激发有机染料的电子注入是超快的。快速注入后与氧化染料复合,在 1.5 ns 内完成 95%的复合。尽管发色团分解限制了 DSPEC 器件对 O 生产的效率,但这里提出的策略的灵活性为光阳极设计提供了一种新方法。