Suppr超能文献

微生物电解池内游离氨浓度变化对葡萄糖发酵途径的影响。

Changes in Glucose Fermentation Pathways as a Response to the Free Ammonia Concentration in Microbial Electrolysis Cells.

机构信息

Biodesign Swette Center for Environmental Biotechnology, Arizona State University , 727 Tyler Road, Tempe, Arizona 85287, United States.

School of Sustainable Engineering and the Built Environment, Arizona State University , Tempe, Arizona 85287, United States.

出版信息

Environ Sci Technol. 2017 Nov 21;51(22):13461-13470. doi: 10.1021/acs.est.6b05620. Epub 2017 Oct 31.

Abstract

When a mixed-culture microbial electrolysis cell (MEC) is fed with a fermentable substrate, such as glucose, a significant fraction of the substrate's electrons ends up as methane (CH) through hydrogenotrophic methanogenesis, an outcome that is undesired. Here, we show that free ammonia-nitrogen (FAN, which is NH) altered the glucose fermentation pathways in batch MECs, minimizing the production of H, the "fuel" for hydrogenotrophic methanogens. Consequently, the Coulombic efficiency (CE) increased: 57% for 0.02 g of FAN/L of fed-MEC, compared to 76% for 0.18 g of FAN/L of fed-MECs and 62% for 0.37 g of FAN/L of fed-MECs. Increasing the FAN concentration was associated with the accumulation of higher organic acids (e.g., lactate, iso-butyrate, and propionate), which was accompanied by increasing relative abundances of phylotypes that are most closely related to anode respiration (Geobacteraceae), lactic-acid production (Lactobacillales), and syntrophic acetate oxidation (Clostridiaceae). Thus, the microbial community established syntrophic relationships among glucose fermenters, acetogens, and anode-respiring bacteria (ARB). The archaeal population of the MEC fed 0.02 g FAN/L was dominated by Methanobacterium, but 0.18 and 0.37 g FAN/L led to Methanobrevibacter becoming the most abundant species. Our results provide insight into a way to decrease CH production and increase CE using FAN to control the fermentation step, instead of inhibiting methanogens using expensive or toxic chemical inhibitors, such as 2-bromoethanesulfonic acid.

摘要

当混合培养微生物电解池 (MEC) 用可发酵底物(如葡萄糖)进料时,很大一部分底物的电子通过氢营养型产甲烷作用最终转化为甲烷 (CH),这是不希望出现的结果。在这里,我们表明游离氨氮(FAN,即 NH)改变了批式 MEC 中的葡萄糖发酵途径,最大限度地减少了氢的产生,而氢是产氢微生物的“燃料”。因此,库仑效率 (CE) 增加:对于进料 MEC 中添加 0.02 g FAN/L,CE 为 57%,相比之下,进料 MEC 中添加 0.18 g FAN/L,CE 为 76%,进料 MEC 中添加 0.37 g FAN/L,CE 为 62%。增加 FAN 浓度与更高的有机酸(例如乳酸盐、异丁酸盐和丙酸盐)的积累有关,这伴随着与阳极呼吸(Geobacteraceae)、乳酸生产(Lactobacillales)和共生乙酸氧化(Clostridiaceae)最密切相关的分类群相对丰度的增加。因此,微生物群落在葡萄糖发酵菌、乙酰菌和阳极呼吸菌 (ARB) 之间建立了共生关系。进料 0.02 g FAN/L 的 MEC 中的古菌种群主要由甲烷杆菌属主导,但进料 0.18 和 0.37 g FAN/L 导致甲烷短杆菌属成为最丰富的物种。我们的研究结果为使用 FAN 控制发酵步骤来减少 CH 产量和提高 CE 提供了思路,而不是使用昂贵或有毒的化学抑制剂(如 2-溴乙烷磺酸)来抑制产甲烷菌。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验