文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在微生物电解池中利用氢气生产生物转化呋喃和酚类化合物。

Biotransformation of Furanic and Phenolic Compounds with Hydrogen Gas Production in a Microbial Electrolysis Cell.

机构信息

School of Civil and Environmental Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0512, United States.

Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States.

出版信息

Environ Sci Technol. 2015 Nov 17;49(22):13667-75. doi: 10.1021/acs.est.5b02313. Epub 2015 Nov 9.


DOI:10.1021/acs.est.5b02313
PMID:26503792
Abstract

Furanic and phenolic compounds are problematic byproducts resulting from the breakdown of lignocellulosic biomass during biofuel production. The capacity of a microbial electrolysis cell (MEC) to produce hydrogen gas (H2) using a mixture of two furanic (furfural, FF; 5-hydroxymethyl furfural, HMF) and three phenolic (syringic acid, SA; vanillic acid, VA; and 4-hydroxybenzoic acid, HBA) compounds as the substrate in the bioanode was assessed. The rate and extent of biotransformation of the five compounds and efficiency of H2 production, as well as the structure of the anode microbial community, were investigated. The five compounds were completely transformed within 7-day batch runs and their biotransformation rate increased with increasing initial concentration. At an initial concentration of 1200 mg/L (8.7 mM) of the mixture of the five compounds, their biotransformation rate ranged from 0.85 to 2.34 mM/d. The anode Coulombic efficiency was 44-69%, which is comparable to that of wastewater-fed MECs. The H2 yield varied from 0.26 to 0.42 g H2-COD/g COD removed in the anode, and the bioanode volume-normalized H2 production rate was 0.07-0.1 L/L-d. The biotransformation of the five compounds took place via fermentation followed by exoelectrogenesis. The major identified fermentation products that did not transform further were catechol and phenol. Acetate was the direct substrate for exoelectrogenesis. Current and H2 production were inhibited at an initial substrate concentration of 1200 mg/L, resulting in acetate accumulation at a much higher level than that measured in other batch runs conducted with a lower initial concentration of the five compounds. The anode microbial community consisted of exoelectrogens, putative degraders of the five compounds, and syntrophic partners of exoelectrogens. The MEC H2 production demonstrated in this study is an alternative to the currently used process of reforming natural gas to supply H2 needed to upgrade bio-oils to stable hydrocarbon fuels.

摘要

呋喃和酚类化合物是木质纤维素生物质在生物燃料生产过程中分解产生的有问题的副产物。评估了微生物电解池(MEC)使用两种呋喃(糠醛,FF;5-羟甲基糠醛,HMF)和三种酚类(丁香酸,SA;香草酸,VA;和 4-羟基苯甲酸,HBA)化合物的混合物作为生物阳极底物生产氢气(H2)的能力。研究了五种化合物的生物转化速率和程度、H2 生产效率以及阳极微生物群落的结构。在 7 天的分批运行中,五种化合物完全转化,其生物转化速率随初始浓度的增加而增加。在 1200mg/L(8.7mM)的五种化合物混合物的初始浓度下,其生物转化速率范围为 0.85-2.34mM/d。阳极库仑效率为 44-69%,与废水-fed MEC 相当。阳极中 COD 去除的 H2 产率为 0.26-0.42g H2-COD/g COD,生物阳极体积归一化的 H2 生产速率为 0.07-0.1L/L-d。五种化合物的生物转化是通过发酵随后进行的电异化作用进行的。未进一步转化的主要鉴定发酵产物是儿茶酚和苯酚。乙酸盐是电异化作用的直接底物。在 1200mg/L 的初始底物浓度下,电流和 H2 产生受到抑制,导致乙酸盐积累水平远高于其他以较低初始浓度进行的批处理。阳极微生物群落由电活性微生物、五种化合物的潜在降解菌和电活性微生物的共代谢伙伴组成。本研究中的 MEC H2 生产是替代目前使用的天然气重整工艺的一种选择,该工艺用于供应将生物油升级为稳定碳氢燃料所需的 H2。

相似文献

[1]
Biotransformation of Furanic and Phenolic Compounds with Hydrogen Gas Production in a Microbial Electrolysis Cell.

Environ Sci Technol. 2015-11-9

[2]
Processes and electron flow in a microbial electrolysis cell bioanode fed with furanic and phenolic compounds.

Environ Sci Pollut Res Int. 2018-3-20

[3]
The extent of fermentative transformation of phenolic compounds in the bioanode controls exoelectrogenic activity in a microbial electrolysis cell.

Water Res. 2016-11-27

[4]
Inhibitory Effect of Furanic and Phenolic Compounds on Exoelectrogenesis in a Microbial Electrolysis Cell Bioanode.

Environ Sci Technol. 2016-9-27

[5]
Biotransformation of 4-Hydroxybenzoic Acid under Nitrate-Reducing Conditions in a MEC Bioanode.

Environ Sci Technol. 2021-2-2

[6]
Hydrogen production from switchgrass via an integrated pyrolysis-microbial electrolysis process.

Bioresour Technol. 2015-6-30

[7]
Boosting hydrogen production from fermentation effluent of biomass wastes in cylindrical single-chamber microbial electrolysis cell.

Environ Sci Pollut Res Int. 2022-12

[8]
Impact of volatile fatty acids on microbial electrolysis cell performance.

Bioresour Technol. 2015-6-30

[9]
Hydrogen production profiles using furans in microbial electrolysis cells.

World J Microbiol Biotechnol. 2017-6

[10]
The impact of anode acclimation strategy on microbial electrolysis cell treating hydrogen fermentation effluent.

Bioresour Technol. 2017-3-30

引用本文的文献

[1]
Bioelectrochemically enhanced degradation of bisphenol S: mechanistic insights from stable isotope-assisted investigations.

iScience. 2020-12-30

[2]
Performance and community structure dynamics of microbial electrolysis cells operated on multiple complex feedstocks.

Biotechnol Biofuels. 2020-10-13

[3]
Biological hydrogen production: molecular and electrolytic perspectives.

World J Microbiol Biotechnol. 2019-7-22

[4]
Glucose and Applied Voltage Accelerated -Nitrophenol Reduction in Biocathode of Bioelectrochemical Systems.

Front Microbiol. 2018-3-27

[5]
Processes and electron flow in a microbial electrolysis cell bioanode fed with furanic and phenolic compounds.

Environ Sci Pollut Res Int. 2018-3-20

[6]
Unravelling biocomplexity of electroactive biofilms for producing hydrogen from biomass.

Microb Biotechnol. 2017-7-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索