School of Biological and Chemical Sciences, Queen Mary University of London , Mile End Road, London, E1 4NS, United Kingdom.
Medical Research Council Mitochondrial Biology Unit, University of Cambridge , Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0XY, United Kingdom.
J Am Chem Soc. 2017 Nov 15;139(45):16319-16326. doi: 10.1021/jacs.7b09261. Epub 2017 Nov 3.
Energy-transducing respiratory complex I (NADH:ubiquinone oxidoreductase) is one of the largest and most complicated enzymes in mammalian cells. Here, we used hyperfine electron paramagnetic resonance (EPR) spectroscopic methods, combined with site-directed mutagenesis, to determine the mechanism of a single proton-coupled electron transfer reaction at one of eight iron-sulfur clusters in complex I, [4Fe-4S] cluster N2. N2 is the terminal cluster of the enzyme's intramolecular electron-transfer chain and the electron donor to ubiquinone. Because of its position and pH-dependent reduction potential, N2 has long been considered a candidate for the elusive "energy-coupling" site in complex I at which energy generated by the redox reaction is used to initiate proton translocation. Here, we used hyperfine sublevel correlation (HYSCORE) spectroscopy, including relaxation-filtered hyperfine and single-matched resonance transfer (SMART) HYSCORE, to detect two weakly coupled exchangeable protons near N2. We assign the larger coupling with A(H) = [-3.0, -3.0, 8.7] MHz to the exchangeable proton of a conserved histidine and conclude that the histidine is hydrogen-bonded to N2, tuning its reduction potential. The histidine protonation state responds to the cluster oxidation state, but the two are not coupled sufficiently strongly to catalyze a stoichiometric and efficient energy transduction reaction. We thus exclude cluster N2, despite its proton-coupled electron transfer chemistry, as the energy-coupling site in complex I. Our work demonstrates the capability of pulse EPR methods for providing detailed information on the properties of individual protons in even the most challenging of energy-converting enzymes.
能量转换呼吸复合物 I(NADH:泛醌氧化还原酶)是哺乳动物细胞中最大和最复杂的酶之一。在这里,我们使用超精细电子顺磁共振(EPR)光谱学方法,结合定点突变,来确定在复合物 I 中的 8 个铁硫簇之一[N4Fe4S]簇 N2 中的单个质子偶联电子转移反应的机制。N2 是酶分子内电子转移链的末端簇,也是泛醌的电子供体。由于其位置和 pH 依赖性还原电位,N2 长期以来一直被认为是复合物 I 中难以捉摸的“能量偶联”位点的候选者,在该位点,氧化还原反应产生的能量用于启动质子转移。在这里,我们使用超精细亚能级相关(HYSCORE)光谱学,包括弛豫过滤超精细和单匹配共振转移(SMART)HYSCORE,来检测 N2 附近的两个弱耦合可交换质子。我们将较大的耦合 A(H)= [-3.0,-3.0,8.7] MHz 分配给保守组氨酸的可交换质子,并得出结论,该组氨酸与 N2 形成氢键,调节其还原电位。组氨酸的质子化状态响应于簇的氧化状态,但两者的耦合强度不足以催化化学计量和有效的能量传递反应。因此,尽管 N2 具有质子偶联电子转移化学性质,但我们将其排除在复合物 I 的能量偶联位点之外。我们的工作证明了脉冲 EPR 方法在提供甚至最具挑战性的能量转换酶中单个质子特性的详细信息方面的能力。