Suppr超能文献

全基因组范围内对小沟静电势的预测能够实现蛋白质 - DNA 结合的生物物理建模。

Genome-wide prediction of minor-groove electrostatic potential enables biophysical modeling of protein-DNA binding.

作者信息

Chiu Tsu-Pei, Rao Satyanarayan, Mann Richard S, Honig Barry, Rohs Remo

机构信息

Computational Biology and Bioinformatics Program, Departments of Biological Sciences, Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, CA 90089, USA.

Departments of Systems Biology and Biochemistry & Molecular Biophysics, Mortimer B. Zuckerman Institute, Columbia University, New York, NY 10032, USA.

出版信息

Nucleic Acids Res. 2017 Dec 1;45(21):12565-12576. doi: 10.1093/nar/gkx915.

Abstract

Protein-DNA binding is a fundamental component of gene regulatory processes, but it is still not completely understood how proteins recognize their target sites in the genome. Besides hydrogen bonding in the major groove (base readout), proteins recognize minor-groove geometry using positively charged amino acids (shape readout). The underlying mechanism of DNA shape readout involves the correlation between minor-groove width and electrostatic potential (EP). To probe this biophysical effect directly, rather than using minor-groove width as an indirect measure for shape readout, we developed a methodology, DNAphi, for predicting EP in the minor groove and confirmed the direct role of EP in protein-DNA binding using massive sequencing data. The DNAphi method uses a sliding-window approach to mine results from non-linear Poisson-Boltzmann (NLPB) calculations on DNA structures derived from all-atom Monte Carlo simulations. We validated this approach, which only requires nucleotide sequence as input, based on direct comparison with NLPB calculations for available crystal structures. Using statistical machine-learning approaches, we showed that adding EP as a biophysical feature can improve the predictive power of quantitative binding specificity models across 27 transcription factor families. High-throughput prediction of EP offers a novel way to integrate biophysical and genomic studies of protein-DNA binding.

摘要

蛋白质与DNA的结合是基因调控过程的一个基本组成部分,但蛋白质如何在基因组中识别其靶位点仍未完全清楚。除了在大沟中的氢键作用(碱基识别)外,蛋白质还利用带正电荷的氨基酸识别小沟几何形状(形状识别)。DNA形状识别的潜在机制涉及小沟宽度与静电势(EP)之间的相关性。为了直接探究这种生物物理效应,而不是使用小沟宽度作为形状识别的间接测量方法,我们开发了一种名为DNAphi的方法来预测小沟中的静电势,并使用大规模测序数据证实了静电势在蛋白质与DNA结合中的直接作用。DNAphi方法采用滑动窗口方法,从基于全原子蒙特卡罗模拟得到的DNA结构的非线性泊松-玻尔兹曼(NLPB)计算结果中挖掘信息。基于与可用晶体结构的NLPB计算的直接比较,我们验证了这种仅需核苷酸序列作为输入的方法。使用统计机器学习方法,我们表明添加静电势作为生物物理特征可以提高27个转录因子家族定量结合特异性模型的预测能力。静电势的高通量预测为整合蛋白质与DNA结合的生物物理和基因组研究提供了一种新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffa5/5716191/3b1aa235970d/gkx915fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验