Department of Biological Sciences, Columbia University, New York, NY 10025, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA.
Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
Mol Cell. 2020 Apr 2;78(1):152-167.e11. doi: 10.1016/j.molcel.2020.01.027. Epub 2020 Feb 12.
Eukaryotic transcription factors (TFs) form complexes with various partner proteins to recognize their genomic target sites. Yet, how the DNA sequence determines which TF complex forms at any given site is poorly understood. Here, we demonstrate that high-throughput in vitro DNA binding assays coupled with unbiased computational analysis provide unprecedented insight into how different DNA sequences select distinct compositions and configurations of homeodomain TF complexes. Using inferred knowledge about minor groove width readout, we design targeted protein mutations that destabilize homeodomain binding both in vitro and in vivo in a complex-specific manner. By performing parallel systematic evolution of ligands by exponential enrichment sequencing (SELEX-seq), chromatin immunoprecipitation sequencing (ChIP-seq), RNA sequencing (RNA-seq), and Hi-C assays, we not only classify the majority of in vivo binding events in terms of complex composition but also infer complex-specific functions by perturbing the gene regulatory network controlled by a single complex.
真核转录因子 (TFs) 与各种伙伴蛋白形成复合物,以识别其基因组靶位点。然而,DNA 序列如何决定特定位置形成哪种 TF 复合物还知之甚少。在这里,我们证明,高通量的体外 DNA 结合测定与无偏计算分析相结合,为不同 DNA 序列如何选择不同的同源域 TF 复合物的组成和构象提供了前所未有的见解。利用关于小沟宽度读出的推断知识,我们设计了靶向蛋白突变,这些突变以特定于复合物的方式在体外和体内均破坏同源域结合。通过进行平行的指数富集配体系统进化 (SELEX-seq)、染色质免疫沉淀测序 (ChIP-seq)、RNA 测序 (RNA-seq) 和 Hi-C 测定,我们不仅根据复合物组成对大多数体内结合事件进行分类,而且通过干扰单个复合物控制的基因调控网络,推断复合物特异性功能。