Chen Yang, Höhn Oliver, Tucher Nico, Pistol Mats-Erik, Anttu Nicklas
Opt Express. 2017 Aug 7;25(16):A665-A679. doi: 10.1364/OE.25.00A665.
A tandem solar cell consisting of a III-V nanowire subcell on top of a planar Si subcell is a promising candidate for next generation photovoltaics due to the potential for high efficiency. However, for success with such applications, the geometry of the system must be optimized for absorption of sunlight. Here, we consider this absorption through optics modeling. Similarly, as for a bulk dual-junction tandem system on a silicon bottom cell, a bandgap of approximately 1.7 eV is optimum for the nanowire top cell. First, we consider a simplified system of bare, uncoated III-V nanowires on the silicon substrate and optimize the absorption in the nanowires. We find that an optimum absorption in 2000 nm long nanowires is reached for a dense array of approximately 15 nanowires per square micrometer. However, when we coat such an array with a conformal indium tin oxide (ITO) top contact layer, a substantial absorption loss occurs in the ITO. This ITO could absorb 37% of the low energy photons intended for the silicon subcell. By moving to a design with a 50 nm thick, planarized ITO top layer, we can reduce this ITO absorption to 5%. However, such a planarized design introduces additional reflection losses. We show that these reflection losses can be reduced with a 100 nm thick SiO anti-reflection coating on top of the ITO layer. When we at the same time include a SiN layer with a thickness of 90 nm on the silicon surface between the nanowires, we can reduce the average reflection loss of the silicon cell from 17% to 4%. Finally, we show that different approximate models for the absorption in the silicon substrate can lead to a 15% variation in the estimated photocurrent density in the silicon subcell.
一种由平面硅子电池顶部的III-V族纳米线子电池组成的串联太阳能电池,因其具有实现高效率的潜力,是下一代光伏技术的一个有前景的候选方案。然而,要使此类应用取得成功,系统的几何结构必须针对太阳光吸收进行优化。在此,我们通过光学建模来考虑这种吸收情况。同样,对于以硅底部电池为基础的体相双结串联系统,纳米线顶部电池的最佳带隙约为1.7 eV。首先,我们考虑硅衬底上未涂覆的裸III-V族纳米线的简化系统,并优化纳米线中的吸收。我们发现,对于每平方微米约15根纳米线的密集阵列,2000 nm长的纳米线能达到最佳吸收。然而,当我们用保形铟锡氧化物(ITO)顶部接触层涂覆这样的阵列时,ITO中会出现大量吸收损失。这种ITO会吸收原本应被硅子电池吸收的37%的低能光子。通过采用50 nm厚的平面化ITO顶层设计,我们可以将这种ITO吸收降低到5%。然而,这种平面化设计会引入额外的反射损失。我们表明,在ITO层顶部涂覆100 nm厚的SiO抗反射涂层可以降低这些反射损失。当我们同时在纳米线之间的硅表面包含一层90 nm厚的SiN层时,我们可以将硅电池的平均反射损失从17%降低到4%。最后,我们表明,硅衬底中吸收的不同近似模型会导致硅子电池中估计的光电流密度有15%的变化。