McLean James P, Ling Yuye, Hendon Christine P
Opt Express. 2017 Oct 16;25(21):25819-25830. doi: 10.1364/OE.25.025819.
Sparse representation theory is an exciting area of research with recent applications in medical imaging and detection, segmentation, and quantitative analysis of biological processes. We present a variant on the robust-principal component analysis (RPCA) algorithm, called frequency constrained RPCA (FC-RPCA), for selectively segmenting dynamic phenomena that exhibit spectra within a user-defined range of frequencies. The algorithm lacks subjective parameter tuning and demonstrates robust segmentation in datasets containing multiple motion sources and high amplitude noise. When tested on 17 ex-vivo, time lapse optical coherence tomography (OCT) B-scans of human ciliated epithelium, segmentation accuracies ranged between 91-99% and consistently out-performed traditional RPCA.
稀疏表示理论是一个令人兴奋的研究领域,最近在医学成像、生物过程的检测、分割和定量分析中得到了应用。我们提出了一种稳健主成分分析(RPCA)算法的变体,称为频率约束RPCA(FC-RPCA),用于选择性地分割在用户定义频率范围内呈现频谱的动态现象。该算法无需主观参数调整,并且在包含多个运动源和高幅度噪声的数据集中表现出稳健的分割效果。在对17幅人体纤毛上皮的离体延时光学相干断层扫描(OCT)B扫描图像进行测试时,分割准确率在91%-99%之间,并且始终优于传统的RPCA。