Suppr超能文献

气管内插管时导管尺寸及鼻气管导管鼻内压迫对呼吸压力损失的作用:一项实验室研究

Role of tube size and intranasal compression of the nasotracheal tube in respiratory pressure loss during nasotracheal intubation: a laboratory study.

作者信息

Futagawa Koichi, Takasugi Yoshihiro, Kobayashi Takeharu, Morishita Satoshi, Okuda Takahiko

机构信息

Department of Anesthesiology, Nara Hospital, Kindai University Faculty of Medicine, 1248-1 Otodacho, Ikoma, Nara, 630-0293, Japan.

Department of Anesthesiology, Kindai University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-sayama, Osaka, 589-8511, Japan.

出版信息

BMC Anesthesiol. 2017 Oct 17;17(1):141. doi: 10.1186/s12871-017-0432-1.

Abstract

BACKGROUND

Small nasotracheal tubes (NTTs) and intranasal compression of the NTT in the nasal cavity may contribute to increasing airway resistance. Since the effects of size, shape, and partial compression of the NTT on airway resistance have not been investigated, values of airway resistance with partial compression of preformed NTTs of various sizes were determined.

METHODS

To determine the factors affecting the respiratory pressure loss during the nasotracheal intubation, physical and fluid dynamics simulations were used. The internal minor axes of NTTs in the nasal cavity of intubated patients were measured using dial calipers. In physical and fluid dynamics simulations, pressure losses through the tubular parts, compressed parts, and slip joints of NTTs with internal diameters (IDs) of 6.0, 6.5, 7.0, 7.5, and 8.0 mm were estimated under partial compression.

RESULTS

The median internal minor axes of the 7.0- and 7.5-mm ID NTTs in the nasal cavity were 5.2 (4.3-5.6) mm and 6.0 (4.2-7.0) mm, respectively. With a volumetric air flow rate of 30 L/min, pressure losses through uncompressed NTTs with IDs of 6.0-, 6.5-, 7.0-, 7.5- and 8.0-mm were 651.6 ± 5.7 (6.64 ± 0.06), 453.4 ± 3.9 (4.62 ± 0.04), 336.5 ± 2.2 (3.43 ± 0.02), 225.2 ± 0.2 (2.30 ± 0.00), and 179.0 ± 1.1 Pa (1.82 ± 0.01 cmHO), respectively; the pressure losses through the slip joints were 220.3 (2.25), 131.1 (1.33), 86.8 (0.88), 57.1 (0.58), and 36.1 Pa (0.37 cmHO), respectively; and the pressure losses through the curvature of the NTT were 71.6 (0.73), 69.0 (0.70), 64.8 (0.66), 32.5 (0.33), and 41.6 Pa (0.42 cmHO), respectively. A maximum compression force of 34.1 N increased the pressure losses by 82.0 (0.84), 38.0 (0.39), 23.5 (0.24), 16.6 (0.17), and 9.3 Pa (0.09 cmHO), respectively.

CONCLUSION

Pressure losses through NTTs are in inverse proportion to the tubes' IDs; greater pressure losses due to slip joints, acute bending, and partial compression of the NTT were obvious in small NTTs. Pressure losses through NTTs, especially in small NTTs, could increase the work of breathing to a greater extent than that through standard tubes; intranasal compression further increases the pressure loss.

摘要

背景

小号鼻气管导管(NTT)以及在鼻腔内对NTT进行鼻内压迫可能会导致气道阻力增加。由于NTT的尺寸、形状及部分压迫对气道阻力的影响尚未得到研究,因此我们测定了不同尺寸的预制NTT在部分压迫情况下的气道阻力值。

方法

为了确定影响鼻气管插管过程中呼吸压力损失的因素,我们采用了物理和流体动力学模拟方法。使用游标卡尺测量了插管患者鼻腔内NTT的内部短轴。在物理和流体动力学模拟中,估计了内径(ID)分别为6.0、6.5、7.0、7.5和8.0 mm的NTT在部分压迫情况下通过管状部分、压缩部分和滑动接头的压力损失。

结果

鼻腔内ID为7.0和7.5 mm的NTT的内部短轴中位数分别为5.2(4.3 - 5.6)mm和6.0(4.2 - 7.0)mm。当体积气流速率为30 L/min时,ID为6.0、6.5、7.0、7.5和8.0 mm的未压缩NTT的压力损失分别为651.6 ± 5.7(6.64 ± 0.06)、453.4 ± 3.9(4.62 ± 0.04)、336.5 ± 2.2(3.43 ± 0.02)、225.2 ± 0.2(2.30 ± 0.00)和179.0 ± 1.1 Pa(1.82 ± 0.01 cmH₂O);通过滑动接头的压力损失分别为220.3(2.25)、131.1(1.33)、86.8(0.88)、57.1(0.58)和36.1 Pa(0.37 cmH₂O);通过NTT弯曲部分的压力损失分别为71.6(0.73)、69.0(0.70)、64.8(0.66)、32.5(0.33)和41.6 Pa(0.42 cmH₂O)。最大压缩力34.1 N分别使压力损失增加了82.0(0.84)、38.0(0.39)、23.5(0.24)、16.6(0.17)和9.3 Pa(0.09 cmH₂O)。

结论

通过NTT的压力损失与导管内径成反比;在小号NTT中,由于滑动接头、急剧弯曲和NTT的部分压迫导致的压力损失更为明显。通过NTT的压力损失,尤其是在小号NTT中,比通过标准导管的压力损失更能在更大程度上增加呼吸功;鼻内压迫会进一步增加压力损失。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cf7/5645985/4b32f71c88b1/12871_2017_432_Fig1_HTML.jpg

相似文献

2
Roles of endotracheal tubes and slip joints in respiratory pressure loss: a laboratory study.
J Anesth. 2016 Oct;30(5):789-95. doi: 10.1007/s00540-016-2210-5. Epub 2016 Jul 1.
3
Thermophysical Properties of Thermosoftening Nasotracheal Tubes.
Anesth Prog. 2018 Summer;65(2):100-105. doi: 10.2344/anpr-65-02-06.
6
Which nostril should be used for nasotracheal intubation: the right or left? A randomized clinical trial.
J Clin Anesth. 2014 Aug;26(5):390-4. doi: 10.1016/j.jclinane.2014.01.016. Epub 2014 Aug 10.
9
The esophageal-tracheal combitube resistance and ventilatory pressures.
J Clin Anesth. 2005 Feb;17(1):26-9. doi: 10.1016/j.jclinane.2004.03.010.
10
Reliability of assessment of nasal flow rate for nostril selection during nasotracheal intubation.
J Clin Anesth. 2012 Jun;24(4):270-4. doi: 10.1016/j.jclinane.2011.08.006.

本文引用的文献

1
Roles of endotracheal tubes and slip joints in respiratory pressure loss: a laboratory study.
J Anesth. 2016 Oct;30(5):789-95. doi: 10.1007/s00540-016-2210-5. Epub 2016 Jul 1.
2
The use of a nasogastric tube to facilitate nasotracheal intubation: a randomised controlled trial.
Anaesthesia. 2014 Jun;69(6):591-7. doi: 10.1111/anae.12627. Epub 2014 Apr 18.
3
Warming Endotracheal Tube in Blind Nasotracheal Intubation throughout Maxillofacial Surgeries.
J Cardiovasc Thorac Res. 2013;5(4):147-51. doi: 10.5681/jcvtr.2013.032. Epub 2013 Dec 5.
5
Rohrer's constant, K2, as a factor of determining inspiratory resistance of common adult endotracheal tubes.
Anaesth Intensive Care. 2011 May;39(3):410-7. doi: 10.1177/0310057X1103900311.
7
9
Good short-term agreement between measured and calculated tracheal pressure.
Br J Anaesth. 2003 Aug;91(2):239-48. doi: 10.1093/bja/aeg169.
10
The peri-operative complications of nasal intubation: a comparison of nostril side.
Anaesthesia. 2001 May;56(5):447-50. doi: 10.1046/j.1365-2044.2001.01524.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验