Suppr超能文献

通过 eRD-GWAS 揭示转录因子表达的遗传变异对表型变异的显著贡献。

Substantial contribution of genetic variation in the expression of transcription factors to phenotypic variation revealed by eRD-GWAS.

机构信息

Department of Agronomy, Iowa State University, 2035 B Roy J Carver Co-Lab, Ames, IA, 50011-3650, USA.

Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, 50011-3650, USA.

出版信息

Genome Biol. 2017 Oct 17;18(1):192. doi: 10.1186/s13059-017-1328-6.

Abstract

BACKGROUND

There are significant limitations in existing methods for the genome-wide identification of genes whose expression patterns affect traits.

RESULTS

The transcriptomes of five tissues from 27 genetically diverse maize inbred lines were deeply sequenced to identify genes exhibiting high and low levels of expression variation across tissues or genotypes. Transcription factors are enriched among genes with the most variation in expression across tissues, as well as among genes with higher-than-median levels of variation in expression across genotypes. In contrast, transcription factors are depleted among genes whose expression is either highly stable or highly variable across genotypes. We developed a Bayesian-based method for genome-wide association studies (GWAS) in which RNA-seq-based measures of transcript accumulation are used as explanatory variables (eRD-GWAS). The ability of eRD-GWAS to identify true associations between gene expression variation and phenotypic diversity is supported by analyses of RNA co-expression networks, protein-protein interaction networks, and gene regulatory networks. Genes associated with 13 traits were identified using eRD-GWAS on a panel of 369 maize inbred lines. Predicted functions of many of the resulting trait-associated genes are consistent with the analyzed traits. Importantly, transcription factors are significantly enriched among trait-associated genes identified with eRD-GWAS.

CONCLUSIONS

eRD-GWAS is a powerful tool for associating genes with traits and is complementary to SNP-based GWAS. Our eRD-GWAS results are consistent with the hypothesis that genetic variation in transcription factor expression contributes substantially to phenotypic diversity.

摘要

背景

现有的全基因组识别技术在鉴定影响性状的基因表达模式方面存在显著的局限性。

结果

对 27 个遗传多样性的玉米自交系的 5 种组织的转录组进行了深度测序,以鉴定在组织或基因型间表现出高表达变异和低表达变异的基因。转录因子在跨组织表达变异最大的基因中以及在跨基因型表达变异高于中位数的基因中富集。相比之下,在表达高度稳定或高度变化的基因中,转录因子是耗竭的。我们开发了一种基于贝叶斯的全基因组关联研究(GWAS)方法,其中基于 RNA-seq 的转录物积累测量值用作解释变量(eRD-GWAS)。eRD-GWAS 能够识别基因表达变异与表型多样性之间的真实关联,这得到了 RNA 共表达网络、蛋白质-蛋白质相互作用网络和基因调控网络分析的支持。使用 eRD-GWAS 对 369 个玉米自交系进行分析,鉴定出与 13 个性状相关的基因。许多与性状相关的基因的预测功能与分析的性状一致。重要的是,在 eRD-GWAS 中鉴定出的与性状相关的基因中,转录因子显著富集。

结论

eRD-GWAS 是一种将基因与性状相关联的强大工具,与 SNP 基 GWAS 互补。我们的 eRD-GWAS 结果与转录因子表达的遗传变异对表型多样性有很大贡献的假设一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8f8/5645915/363c6d496a54/13059_2017_1328_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验