Suppr超能文献

使用具有视觉解释的卷积神经网络提高结直肠息肉光学诊断的准确性。

Improved Accuracy in Optical Diagnosis of Colorectal Polyps Using Convolutional Neural Networks with Visual Explanations.

作者信息

Jin Eun Hyo, Lee Dongheon, Bae Jung Ho, Kang Hae Yeon, Kwak Min-Sun, Seo Ji Yeon, Yang Jong In, Yang Sun Young, Lim Seon Hee, Yim Jeong Yoon, Lim Joo Hyun, Chung Goh Eun, Chung Su Jin, Choi Ji Min, Han Yoo Min, Kang Seung Joo, Lee Jooyoung, Chan Kim Hee, Kim Joo Sung

机构信息

Department of Internal Medicine, Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea.

Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, Korea.

出版信息

Gastroenterology. 2020 Jun;158(8):2169-2179.e8. doi: 10.1053/j.gastro.2020.02.036. Epub 2020 Feb 29.

Abstract

BACKGROUND & AIMS: Narrow-band imaging (NBI) can be used to determine whether colorectal polyps are adenomatous or hyperplastic. We investigated whether an artificial intelligence (AI) system can increase the accuracy of characterizations of polyps by endoscopists of different skill levels.

METHODS

We developed convolutional neural networks (CNNs) for evaluation of diminutive colorectal polyps, based on efficient neural architecture searches via parameter sharing with augmentation using NBIs of diminutive (≤5 mm) polyps, collected from October 2015 through October 2017 at the Seoul National University Hospital, Healthcare System Gangnam Center (training set). We trained the CNN using images from 1100 adenomatous polyps and 1050 hyperplastic polyps from 1379 patients. We then tested the system using 300 images of 180 adenomatous polyps and 120 hyperplastic polyps, obtained from January 2018 to May 2019. We compared the accuracy of 22 endoscopists of different skill levels (7 novices, 4 experts, and 11 NBI-trained experts) vs the CNN in evaluation of images (adenomatous vs hyperplastic) from 180 adenomatous and 120 hyperplastic polyps. The endoscopists then evaluated the polyp images with knowledge of the CNN-processed results. We conducted mixed-effect logistic and linear regression analyses to determine the effects of AI assistance on the accuracy of analysis of diminutive colorectal polyps by endoscopists (primary outcome).

RESULTS

The CNN distinguished adenomatous vs hyperplastic diminutive polyps with 86.7% accuracy, based on histologic analysis as the reference standard. Endoscopists distinguished adenomatous vs hyperplastic diminutive polyps with 82.5% overall accuracy (novices, 73.8% accuracy; experts, 83.8% accuracy; and NBI-trained experts, 87.6% accuracy). With knowledge of the CNN-processed results, the overall accuracy of the endoscopists increased to 88.5% (P < .05). With knowledge of the CNN-processed results, the accuracy of novice endoscopists increased to 85.6% (P < .05). The CNN-processed results significantly reduced endoscopist time of diagnosis (from 3.92 to 3.37 seconds per polyp, P = .042).

CONCLUSIONS

We developed a CNN that significantly increases the accuracy of evaluation of diminutive colorectal polyps (as adenomatous vs hyperplastic) and reduces the time of diagnosis by endoscopists. This AI assistance system significantly increased the accuracy of analysis by novice endoscopists, who achieved near-expert levels of accuracy without extra training. The CNN assistance system can reduce the skill-level dependence of endoscopists and costs.

摘要

背景与目的

窄带成像(NBI)可用于确定大肠息肉是腺瘤性还是增生性。我们研究了人工智能(AI)系统是否能提高不同技能水平的内镜医师对息肉特征的判断准确性。

方法

我们基于高效的神经架构搜索,通过与2015年10月至2017年10月在首尔国立大学医院江南医疗中心收集的微小(≤5mm)息肉的窄带成像(NBI)进行参数共享和增强,开发了用于评估微小大肠息肉的卷积神经网络(CNN)(训练集)。我们使用来自1379例患者的1100个腺瘤性息肉和1050个增生性息肉的图像对CNN进行训练。然后,我们使用2018年1月至2019年5月获得的180个腺瘤性息肉和120个增生性息肉的300张图像对该系统进行测试。我们比较了22名不同技能水平的内镜医师(7名新手、4名专家和11名接受NBI培训的专家)与CNN在评估180个腺瘤性和120个增生性息肉的图像(腺瘤性与增生性)时的准确性。然后,内镜医师在知晓CNN处理结果的情况下对息肉图像进行评估。我们进行了混合效应逻辑回归和线性回归分析,以确定AI辅助对内镜医师分析微小大肠息肉准确性的影响(主要结果)。

结果

以组织学分析为参考标准,CNN区分腺瘤性与增生性微小息肉的准确率为86.7%。内镜医师区分腺瘤性与增生性微小息肉的总体准确率为82.5%(新手,准确率73.8%;专家,准确率83.8%;接受NBI培训的专家,准确率87.6%)。在知晓CNN处理结果的情况下,内镜医师的总体准确率提高到了88.5%(P <.05)。在知晓CNN处理结果的情况下,新手内镜医师的准确率提高到了85.6%(P <.05)。CNN处理结果显著缩短了内镜医师的诊断时间(从每个息肉3.92秒缩短至3.37秒,P =.042)。

结论

我们开发的CNN显著提高了评估微小大肠息肉(腺瘤性与增生性)的准确性,并缩短了内镜医师的诊断时间。这种AI辅助系统显著提高了新手内镜医师的分析准确性,他们在没有额外培训的情况下达到了近乎专家的准确率水平。CNN辅助系统可以降低内镜医师对技能水平的依赖并降低成本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验