Suppr超能文献

硝酸盐同化途径(NAP):结构基因(nit)和转运蛋白基因(ntr1)在尖孢镰刀菌番茄专化型生长和致病性中的作用

Nitrate assimilation pathway (NAP): role of structural (nit) and transporter (ntr1) genes in Fusarium oxysporum f.sp. lycopersici growth and pathogenicity.

作者信息

Gomez-Gil Lucia, Camara Almiron Jesus, Rodriguez Carrillo Patricia Lizett, Olivares Medina Cindy Nayely, Bravo Ruiz Gustavo, Romo Rodriguez Pamela, Corrales Escobosa Alma Rosa, Gutierrez Corona Felix, Roncero M Isabel

机构信息

Departamento de Genetica, Universidad de Cordoba and Campus de Excelencia Agroalimentario (ceiA3), E-14071, Cordoba, Spain.

Departamento de Biologia y, DCNE, Universidad de Guanajuato, Campus Guanajuato, Gto. Noria alta s/n, C.P. 36000, Guanajuato, Mexico.

出版信息

Curr Genet. 2018 Apr;64(2):493-507. doi: 10.1007/s00294-017-0766-8. Epub 2017 Oct 17.

Abstract

The tomato pathogen Fusarium oxysporum f.sp. lycopersici possesses the capability to use nitrate as the only nitrogen source under aerobic and anaerobic conditions and to activate virulence-related functions when cultivated in the presence of nitrate, but not in ammonium. The genome of F. oxysporum f.sp. lycopersici encodes three paralogs nitrate reductase (NR) genes (nit1, nit2 and nit3) and one predicted ortholog of the Aspergillus nidulans high-affinity nitrate/nitrite transporters NtrA and NtrB, named ntr1. We set out to clarify the role of nit1, nit2, nit3 and ntr1 genes in nitrate assimilation and in the virulence of F. oxysporum f.sp. lycopersici. Quantitative RT-PCR analysis revealed that only nit1, nit2 and ntr1 are expressed at significant levels during growth in nitrate as the only nitrogen source. Targeted deletion of nit1 and ntr1, but not of nit2 or nit3, severely impaired growth of F. oxysporum on nitrate as nitrogen source, indicating that Nit1 and Ntr1 proteins are involved in nitrate assimilation by the fungus; biochemical analysis of nit mutants indicated that Nit1 and Nit2 enzymes contribute to about 50 and 30% of the total NR activity, respectively. In addition, a spontaneous chlorate-resistant mutant derived from F. oxysporum 4287, denoted NitFG, was characterized, showing inability to grow in nitrate under aerobic and anaerobic conditions and low levels of NR activity, in spite of its increased transcription levels of nit1 and nit2 genes. Tomato plant infection assays showed that NitFG and ∆ntr1 mutants induced an earlier death in tomato plants, whereas the single mutants ∆nit1, ∆nit2 and ∆nit1∆nit2 double mutant showed a mortality rate similar to the wild-type strain. Taken together, these results indicate that the Nit1 and Ntr1 proteins are important for nitrate assimilation of F. oxysporum f.sp. lycopersici incubated under aerobic and anaerobic conditions and that this metabolic process is not essential for the virulence of the fungus. These observations open new questions about the role of Nit1, Nit2, and Nit3 proteins in other routes of nitrate metabolism in this pathogenic fungus and in the possible regulatory role that can be exerted by the AreA protein in these routes.

摘要

番茄病原菌尖孢镰刀菌番茄专化型能够在有氧和无氧条件下将硝酸盐作为唯一氮源利用,并且在硝酸盐存在的情况下培养时可激活与毒力相关的功能,但在铵存在时则不能。尖孢镰刀菌番茄专化型的基因组编码三个硝酸盐还原酶(NR)基因旁系同源物(nit1、nit2和nit3)以及一个预测的构巢曲霉高亲和力硝酸盐/亚硝酸盐转运蛋白NtrA和NtrB的直系同源物,命名为ntr1。我们着手阐明nit1、nit2、nit3和ntr1基因在硝酸盐同化以及尖孢镰刀菌番茄专化型毒力中的作用。定量逆转录聚合酶链反应(RT-PCR)分析表明,在以硝酸盐作为唯一氮源生长期间,只有nit1、nit2和ntr1以显著水平表达。靶向缺失nit1和ntr1,而不是nit2或nit3,严重损害了尖孢镰刀菌在以硝酸盐作为氮源时的生长,这表明Nit1和Ntr1蛋白参与了真菌的硝酸盐同化;对nit突变体的生化分析表明,Nit1和Nit2酶分别约占总NR活性的50%和30%。此外,对源自尖孢镰刀菌4287的自发抗氯酸盐突变体(命名为NitFG)进行了表征,结果表明尽管其nit1和nit2基因转录水平升高,但在有氧和无氧条件下均无法在硝酸盐中生长且NR活性较低。番茄植株感染试验表明,NitFG和∆ntr1突变体导致番茄植株更早死亡,而单突变体∆nit1、∆nit2和∆nit1∆nit2双突变体的死亡率与野生型菌株相似。综上所述,这些结果表明,Nit1和Ntr1蛋白对于在有氧和无氧条件下培养的尖孢镰刀菌番茄专化型的硝酸盐同化很重要,并且这种代谢过程对于真菌的毒力并非必不可少。这些观察结果提出了关于Nit1、Nit2和Nit3蛋白在这种致病真菌的其他硝酸盐代谢途径中的作用以及AreA蛋白在这些途径中可能发挥的调节作用的新问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验