Max-Born-Institut, Max-Born-Strasse 2A, Berlin, 12489, Germany.
Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, Heidelberg, 69120, Germany.
Nat Commun. 2017 Oct 18;8(1):1018. doi: 10.1038/s41467-017-01133-y.
Observing the crucial first few femtoseconds of photochemical reactions requires tools typically not available in the femtochemistry toolkit. Such dynamics are now within reach with the instruments provided by attosecond science. Here, we apply experimental and theoretical methods to assess the ultrafast nonadiabatic vibronic processes in a prototypical complex system-the excited benzene cation. We use few-femtosecond duration extreme ultraviolet and visible/near-infrared laser pulses to prepare and probe excited cationic states and observe two relaxation timescales of 11 ± 3 fs and 110 ± 20 fs. These are interpreted in terms of population transfer via two sequential conical intersections. The experimental results are quantitatively compared with state-of-the-art multi-configuration time-dependent Hartree calculations showing convincing agreement in the timescales. By characterising one of the fastest internal conversion processes studied to date, we enter an extreme regime of ultrafast molecular dynamics, paving the way to tracking and controlling purely electronic dynamics in complex molecules.
观察光化学反应的最初关键的飞秒时间需要通常在飞秒化学工具包中不可用的工具。随着阿秒科学提供的仪器,这些动力学现在已经可以实现。在这里,我们应用实验和理论方法来评估典型复杂体系-激发态苯阳离子中的超快非绝热振动态过程。我们使用持续时间为几飞秒的极紫外和可见/近红外激光脉冲来制备和探测激发的阳离子态,并观察到两个弛豫时间尺度为 11 ± 3 fs 和 110 ± 20 fs。这些通过两个连续的锥形交叉解释为通过人口转移。实验结果与最先进的多组态含时哈特ree 计算进行了定量比较,在时间尺度上显示出令人信服的一致性。通过对迄今为止研究的最快内部转换过程之一进行表征,我们进入了超快分子动力学的极端状态,为跟踪和控制复杂分子中的纯电子动力学铺平了道路。