Suppr超能文献

骨钙素和骨桥蛋白影响骨形态和力学性能。

Osteocalcin and osteopontin influence bone morphology and mechanical properties.

作者信息

Bailey Stacyann, Karsenty Gerard, Gundberg Caren, Vashishth Deepak

机构信息

Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York.

Department of Genetics and Development, Columbia University Medical Center, New York, New York.

出版信息

Ann N Y Acad Sci. 2017 Dec;1409(1):79-84. doi: 10.1111/nyas.13470. Epub 2017 Oct 16.

Abstract

Osteocalcin (OC) and osteopontin (OPN) are major non-collagenous proteins (NCPs) involved in bone matrix organization and deposition. In spite of this, it is currently unknown whether OC and OPN alter bone morphology and consequently affect bone fracture resistance. The goal of this study is to establish the role of OC and OPN in the determination of cortical bone size, shape, and mechanical properties. Our results show that Oc and Opn mice were no different from each other or wild type (WT) with respect to bone morphology (P > 0.1). Bones from mice lacking both NCPs (Oc Opn ) were shorter, with thicker cortices and larger cortical areas, compared with the WT, Oc , and Opn groups (P < 0.05), suggesting a synergistic role for NCPs in the determination of bone morphology. Maximum bending load was significantly different among the groups (P = 0.024), while tissue mineral density and measures of stiffness and strength were not different (P > 0.1). We conclude that the removal of both OC and OPN from bone matrix induces morphological adaptation at the structural level to maintain bone strength.

摘要

骨钙素(OC)和骨桥蛋白(OPN)是参与骨基质组织和沉积的主要非胶原蛋白(NCPs)。尽管如此,目前尚不清楚OC和OPN是否会改变骨形态,进而影响抗骨折能力。本研究的目的是确定OC和OPN在皮质骨大小、形状和力学性能测定中的作用。我们的结果表明,就骨形态而言,Oc和Opn小鼠彼此之间以及与野生型(WT)小鼠没有差异(P>0.1)。与WT、Oc和Opn组相比,缺乏这两种NCPs(Oc Opn)的小鼠的骨骼更短,皮质更厚,皮质面积更大(P<0.05),这表明NCPs在骨形态的决定中具有协同作用。各组之间的最大弯曲载荷有显著差异(P = 0.024),而组织矿物质密度以及刚度和强度测量值没有差异(P>0.1)。我们得出结论,从骨基质中去除OC和OPN会在结构水平上诱导形态适应,以维持骨强度。

相似文献

1
Osteocalcin and osteopontin influence bone morphology and mechanical properties.
Ann N Y Acad Sci. 2017 Dec;1409(1):79-84. doi: 10.1111/nyas.13470. Epub 2017 Oct 16.
2
Biomolecular regulation, composition and nanoarchitecture of bone mineral.
Sci Rep. 2018 Jan 19;8(1):1191. doi: 10.1038/s41598-018-19253-w.
3
Structural role of osteocalcin and osteopontin in energy dissipation in bone.
J Biomech. 2018 Oct 26;80:45-52. doi: 10.1016/j.jbiomech.2018.08.014. Epub 2018 Aug 28.
4
Loss and rescue of osteocalcin and osteopontin modulate osteogenic and angiogenic features of mesenchymal stem/stromal cells.
J Cell Physiol. 2020 Oct;235(10):7496-7515. doi: 10.1002/jcp.29653. Epub 2020 Mar 11.
6
Expression of bone matrix proteins mRNA during distraction osteogenesis.
J Bone Miner Res. 1998 Aug;13(8):1221-31. doi: 10.1359/jbmr.1998.13.8.1221.
7
BMP9 prevents induction of osteopontin in JNK-inactivated osteoblasts via Hey1-Id4 interaction.
Int J Biochem Cell Biol. 2019 Nov;116:105614. doi: 10.1016/j.biocel.2019.105614. Epub 2019 Sep 21.
10
OPN, BSP, and Bone Quality-Structural, Biochemical, and Biomechanical Assessment in OPN, BSP, and DKO Mice.
Calcif Tissue Int. 2024 Jul;115(1):63-77. doi: 10.1007/s00223-024-01217-0. Epub 2024 May 11.

引用本文的文献

2
Expression of osteogenic proteins in kidneys of cats with nephrocalcinosis.
J Vet Intern Med. 2025 Jan-Feb;39(1):e17278. doi: 10.1111/jvim.17278.
6
Regulation of Skeletal Development and Maintenance by Runx2 and Sp7.
Int J Mol Sci. 2024 Sep 20;25(18):10102. doi: 10.3390/ijms251810102.
7
Titanium micro-nano textured surface with strontium incorporation improves osseointegration: an in vivo and in vitro study.
J Appl Oral Sci. 2024 Sep 16;32:e20240144. doi: 10.1590/1678-7757-2024-0144. eCollection 2024.
8
Bone: A Neglected Endocrine Organ?
J Clin Med. 2024 Jul 2;13(13):3889. doi: 10.3390/jcm13133889.
10
OPN, BSP, and Bone Quality-Structural, Biochemical, and Biomechanical Assessment in OPN, BSP, and DKO Mice.
Calcif Tissue Int. 2024 Jul;115(1):63-77. doi: 10.1007/s00223-024-01217-0. Epub 2024 May 11.

本文引用的文献

1
Do Non-collagenous Proteins Affect Skeletal Mechanical Properties?
Calcif Tissue Int. 2015 Sep;97(3):281-91. doi: 10.1007/s00223-015-0016-3. Epub 2015 Jun 6.
4
Dilatational band formation in bone.
Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19178-83. doi: 10.1073/pnas.1201513109. Epub 2012 Nov 5.
5
Effects of bone matrix proteins on fracture and fragility in osteoporosis.
Curr Osteoporos Rep. 2012 Jun;10(2):141-50. doi: 10.1007/s11914-012-0103-6.
6
Whole bone mechanics and bone quality.
Clin Orthop Relat Res. 2011 Aug;469(8):2139-49. doi: 10.1007/s11999-011-1784-3.
7
Path analyses of selection.
Trends Ecol Evol. 1991 Sep;6(9):276-80. doi: 10.1016/0169-5347(91)90004-H.
8
Functional interactions among morphologic and tissue quality traits define bone quality.
Clin Orthop Relat Res. 2011 Aug;469(8):2150-9. doi: 10.1007/s11999-010-1706-9.
9
Methods for assessing bone quality: a review.
Clin Orthop Relat Res. 2011 Aug;469(8):2128-38. doi: 10.1007/s11999-010-1702-0.
10
Age-related changes in bone structure and strength in female and male BALB/c mice.
Calcif Tissue Int. 2010 Jun;86(6):470-83. doi: 10.1007/s00223-010-9359-y. Epub 2010 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验