Mineralized Tissues Laboratory, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA,
Clin Orthop Relat Res. 2011 Aug;469(8):2128-38. doi: 10.1007/s11999-010-1702-0.
Bone mass, geometry, and tissue material properties contribute to bone structural integrity. Thus, bone strength arises from both bone quantity and quality. Bone quality encompasses the geometric and material factors that contribute to fracture resistance.
QUESTIONS/PURPOSES: This review presents an overview of the methods for assessing bone quality across multiple length scales, their outcomes, and their relative advantages and disadvantages.
A PubMed search was conducted to identify methods related to bone mechanical testing, imaging, and compositional analysis. Using various exclusion criteria, articles were selected for inclusion.
Methods for assessing mechanical properties include whole-bone, bulk tissue, microbeam, and micro- and nanoindentation testing techniques. Outcomes include structural strength and material modulus. Advantages include direct assessment of bone strength; disadvantages include specimen destruction during testing. Methods for characterizing bone geometry and microarchitecture include quantitative CT, high-resolution peripheral quantitative CT, high-resolution MRI, and micro-CT. Outcomes include three-dimensional whole-bone geometry, trabecular morphology, and tissue mineral density. The primary advantage is the ability to image noninvasively; disadvantages include the lack of a direct measure of bone strength. Methods for measuring tissue composition include scanning electron microscopy, vibrational spectroscopy, nuclear magnetic resonance imaging, and chemical and physical analytical techniques. Outcomes include mineral density and crystallinity, elemental composition, and collagen crosslink composition. Advantages include the detailed material characterization; disadvantages include the need for a biopsy.
Although no single method can completely characterize bone quality, current noninvasive imaging techniques can be combined with ex vivo mechanical and compositional techniques to provide a comprehensive understanding of bone quality.
骨量、几何形状和组织材料特性共同构成了骨骼的结构完整性。因此,骨骼强度既来自于骨量,也来自于骨质量。骨质量涵盖了有助于抗骨折能力的几何形状和材料因素。
问题/目的:本文综述了评估跨多个长度尺度的骨质量的方法、它们的结果,以及它们的相对优缺点。
通过 PubMed 搜索,确定了与骨力学测试、成像和成分分析相关的方法。使用各种排除标准,选择了纳入的文章。
评估机械性能的方法包括整体骨、组织块、微束和微纳米压痕测试技术。结果包括结构强度和材料模量。优点包括对骨强度的直接评估;缺点是在测试过程中会破坏标本。用于描述骨几何形状和微结构的方法包括定量 CT、高分辨率外周定量 CT、高分辨率 MRI 和微 CT。结果包括三维整体骨几何形状、小梁形态和组织矿密度。主要优点是能够进行非侵入性成像;缺点是缺乏对骨强度的直接测量。用于测量组织成分的方法包括扫描电子显微镜、振动光谱学、磁共振成像以及化学和物理分析技术。结果包括矿密度和结晶度、元素组成以及胶原交联组成。优点包括对材料的详细特征描述;缺点是需要进行活检。
尽管没有一种单一的方法可以完全描述骨质量,但目前的非侵入性成像技术可以与离体力学和成分技术相结合,提供对骨质量的全面了解。