Suppr超能文献

排水增加了热带泥炭土壤的 CO 和 N O 排放。

Drainage increases CO and N O emissions from tropical peat soils.

机构信息

Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.

Agriculture and Agri-Food Canada, Fredericton, NB, Canada.

出版信息

Glob Chang Biol. 2020 Aug;26(8):4583-4600. doi: 10.1111/gcb.15147. Epub 2020 Jun 20.

Abstract

Tropical peatlands are vital ecosystems that play an important role in global carbon storage and cycles. Current estimates of greenhouse gases from these peatlands are uncertain as emissions vary with environmental conditions. This study provides the first comprehensive analysis of managed and natural tropical peatland GHG fluxes: heterotrophic (i.e. soil respiration without roots), total CO respiration rates, CH and N O fluxes. The study documents studies that measure GHG fluxes from the soil (n = 372) from various land uses, groundwater levels and environmental conditions. We found that total soil respiration was larger in managed peat ecosystems (median = 52.3 Mg CO  ha  year ) than in natural forest (median = 35.9 Mg CO  ha  year ). Groundwater level had a stronger effect on soil CO emission than land use. Every 100 mm drop of groundwater level caused an increase of 5.1 and 3.7 Mg CO  ha  year for plantation and cropping land use, respectively. Where groundwater is deep (≥0.5 m), heterotrophic respiration constituted 84% of the total emissions. N O emissions were significantly larger at deeper groundwater levels, where every drop in 100 mm of groundwater level resulted in an exponential emission increase (exp(0.7) kg N ha  year ). Deeper groundwater levels induced high N O emissions, which constitute about 15% of total GHG emissions. CH emissions were large where groundwater is shallow; however, they were substantially smaller than other GHG emissions. When compared to temperate and boreal peatland soils, tropical peatlands had, on average, double the CO emissions. Surprisingly, the CO emission rates in tropical peatlands were in the same magnitude as tropical mineral soils. This comprehensive analysis provides a great understanding of the GHG dynamics within tropical peat soils that can be used as a guide for policymakers to create suitable programmes to manage the sustainability of peatlands effectively.

摘要

热带泥炭地是至关重要的生态系统,在全球碳储存和循环中发挥着重要作用。目前对这些泥炭地温室气体排放的估计并不确定,因为排放随环境条件而变化。本研究首次全面分析了管理和自然热带泥炭地温室气体通量:异养(即无根系的土壤呼吸)、总 CO 呼吸速率、CH 和 N O 通量。该研究记录了从各种土地利用、地下水位和环境条件下测量土壤温室气体通量的研究(n=372)。我们发现,管理泥炭地生态系统的总土壤呼吸量(中位数=52.3 Mg CO ha year)大于自然森林(中位数=35.9 Mg CO ha year)。地下水位对土壤 CO 排放的影响大于土地利用。地下水位每下降 100 毫米,人工林和作物用地的 CO 排放分别增加 5.1 和 3.7 Mg CO ha year。在地下水较深(≥0.5 m)的地方,异养呼吸构成总排放量的 84%。N O 排放量在地下水较深的地方显著增加,地下水位每下降 100 毫米,排放量就会呈指数增长(exp(0.7) kg N ha year)。更深的地下水导致高 N O 排放,约占总温室气体排放量的 15%。地下水较浅的地方 CH 排放量较大;然而,它们比其他温室气体排放要小得多。与温带和北方泥炭地土壤相比,热带泥炭地的 CO 排放量平均增加了一倍。令人惊讶的是,热带泥炭地的 CO 排放速率与热带矿物土壤相当。本综合分析为了解热带泥炭地土壤中的温室气体动态提供了很好的认识,可以为决策者提供指导,制定适当的方案,有效地管理泥炭地的可持续性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验