Suppr超能文献

基于多目标分层优化的脑动脉造影单平面 3D-2D 配准。

Monoplane 3D-2D registration of cerebral angiograms based on multi-objective stratified optimization.

机构信息

Sabanci University, Orta Mahalle, Tuzla 34956, Istanbul, Turkey.

出版信息

Phys Med Biol. 2017 Nov 21;62(24):9377-9394. doi: 10.1088/1361-6560/aa9474.

Abstract

Registration of 3D pre-interventional to 2D intra-interventional medical images has an increasingly important role in surgical planning, navigation and treatment, because it enables the physician to co-locate depth information given by pre-interventional 3D images with the live information in intra-interventional 2D images such as x-ray. Most tasks during image-guided interventions are carried out under a monoplane x-ray, which is a highly ill-posed problem for state-of-the-art 3D to 2D registration methods. To address the problem of rigid 3D-2D monoplane registration we propose a novel multi-objective stratified parameter optimization, wherein a small set of high-magnitude intensity gradients are matched between the 3D and 2D images. The stratified parameter optimization matches rotation templates to depth templates, first sampled from projected 3D gradients and second from the 2D image gradients, so as to recover 3D rigid-body rotations and out-of-plane translation. The objective for matching was the gradient magnitude correlation coefficient, which is invariant to in-plane translation. The in-plane translations are then found by locating the maximum of the gradient phase correlation between the best matching pair of rotation and depth templates. On twenty pairs of 3D and 2D images of ten patients undergoing cerebral endovascular image-guided intervention the 3D to monoplane 2D registration experiments were setup with a rather high range of initial mean target registration error from 0 to 100 mm. The proposed method effectively reduced the registration error to below 2 mm, which was further refined by a fast iterative method and resulted in a high final registration accuracy (0.40 mm) and high success rate ([Formula: see text]96%). Taking into account a fast execution time below 10 s, the observed performance of the proposed method shows a high potential for application into clinical image-guidance systems.

摘要

3D 术前到 2D 术中医学图像的配准在手术规划、导航和治疗中起着越来越重要的作用,因为它使医生能够将术前 3D 图像提供的深度信息与术中 2D 图像(如 X 射线)中的实时信息进行配准。在图像引导介入治疗中,大多数任务都是在单平面 X 射线下进行的,这对最先进的 3D 到 2D 配准方法来说是一个高度不适定的问题。为了解决刚性 3D-2D 单平面配准问题,我们提出了一种新的多目标分层参数优化方法,其中在 3D 和 2D 图像之间匹配一小组高强度梯度。分层参数优化将旋转模板与深度模板匹配,首先从投影 3D 梯度中采样,其次从 2D 图像梯度中采样,以恢复 3D 刚体旋转和平动。匹配的目标是梯度幅度相关系数,它对平面内平移不变。然后通过在最佳匹配的旋转和深度模板之间找到梯度相位相关的最大值来找到平面内平移。在对 10 名接受脑血管内图像引导介入治疗的患者的 20 对 3D 和 2D 图像进行的 3D 到单平面 2D 配准实验中,初始平均目标配准误差范围从 0 到 100mm 相当大。该方法有效地将配准误差降低到 2mm 以下,通过快速迭代方法进一步细化,得到了较高的最终配准精度(0.40mm)和较高的成功率(96%)。考虑到执行时间在 10s 以下,所提出的方法的性能表明了其在临床图像引导系统中的应用潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验