Faccio Greta, Salentinig Stefan
Laboratory for Biointerfaces, Department "Materials Meet Life", Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland.
Biophys J. 2017 Oct 17;113(8):1731-1737. doi: 10.1016/j.bpj.2017.08.044.
Protein biosensors are widely used for the monitoring of metabolite concentration and enzymatic activities inside living cells and in in vitro applications. Neutrophil elastase (NE) is a serine protease of relevance in inflammatory diseases whose activity can lead to pathological conditions if unregulated. This study focuses on the structural characterization of a biosensor for NE activity based on Förster resonance energy transfer (FRET). The cleavage by NE results in dissociation of the FRET fluorescent protein pair and alteration of the fluorescent emission spectrum. We have used small angle x-ray scattering at a high intensity synchrotron source, combined with model-free analysis of the scattering data, to demonstrate the structure of the biosensor and the effect of its exposure to NE on size and shape. These investigations, together with biochemical studies, established the nanostructure-activity relationship that may contribute to the detailed understanding of the FRET-based biosensor and guide the rational design of new biosensor constructs.
蛋白质生物传感器广泛应用于监测活细胞内的代谢物浓度和酶活性以及体外应用。中性粒细胞弹性蛋白酶(NE)是一种与炎症性疾病相关的丝氨酸蛋白酶,如果其活性不受调节,可能会导致病理状况。本研究聚焦于基于Förster共振能量转移(FRET)的NE活性生物传感器的结构表征。NE的切割导致FRET荧光蛋白对解离,并改变荧光发射光谱。我们利用高强度同步辐射源的小角X射线散射,并结合对散射数据的无模型分析,来阐明生物传感器的结构及其暴露于NE后对尺寸和形状的影响。这些研究与生化研究一起,建立了纳米结构 - 活性关系,这可能有助于深入理解基于FRET的生物传感器,并指导新型生物传感器构建体的合理设计。