Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India.
Org Biomol Chem. 2019 Feb 27;17(9):2413-2422. doi: 10.1039/c8ob03208d.
Odorants constitute a small and chemically diverse group of molecules with ethanol functioning as a key odorant that induces reproductive toxicity and adverse chronic effects on the liver. Analytical tools designed so far for the detection of odorant molecules are relatively invasive. Therefore, a tool that can measure the corresponding rate changes of ethanol concentration in real-time is highly desirable. Here in this work, we report a genetically encoded fluorescence resonance energy transfer (FRET)-based nanosensor for in vivo quantification of ethanol at the cellular level with high spatial and temporal resolution. A human odorant-binding protein (hOBPIIa) was flanked by fluorescent proteins ECFP (Enhanced Cyan Fluorescent Protein) and Venus at the N- and C-terminus respectively. The constructed FRET nanosensor was named the fluorescent indicator protein for odorants (FLIPO). FLIPO allows in vitro and in vivo determination of FRET changes in a concentration-dependent manner. The developed nanosensor is highly specific to ethanol, stable to pH changes and provides rapid detection rate response. FLIPO-42 is the most efficient nanosensor created that measures ethanol with an apparent affinity (Kd) of 4.16 μM and covers the physiological range of 500 nM to 12 μM ethanol measurement. FLIPO-42 can measure ethanol dynamics in bacterial, yeast and mammalian cells non-invasively in real time which proves its efficacy as a sensing device in both prokaryotic and eukaryotic systems. Taken together, a prototype for a set of nanosensors was established, potentially enabling the monitoring of dynamic changes of ethanol and investigate its uptake and metabolism with subcellular resolution in vivo and ex vivo. Furthermore, the advent of a set of novel nanosensors will provide us with the tools for numerous medical, scientific, industrial and environmental applications which would help to illuminate their role in biological systems.
气味物质构成了一个小分子且化学结构多样化的分子群,其中乙醇是一种关键的气味物质,它会导致生殖毒性和肝脏的慢性不良影响。迄今为止,为检测气味物质而设计的分析工具具有一定的侵入性。因此,人们非常希望有一种工具可以实时测量乙醇浓度的相应变化率。在这项工作中,我们报告了一种基于遗传编码的荧光共振能量转移(FRET)的纳米传感器,用于在细胞水平上实时定量测量乙醇,具有高时空分辨率。一个人源气味结合蛋白(hOBPIIa)的 N 端和 C 端分别被荧光蛋白 ECFP(增强型青色荧光蛋白)和 Venus 侧翼。构建的 FRET 纳米传感器被命名为气味荧光指示剂蛋白(FLIPO)。FLIPO 允许在体外和体内以浓度依赖的方式确定 FRET 的变化。该开发的纳米传感器对乙醇具有高度特异性,对 pH 值变化稳定,并且提供快速的检测率响应。FLIPO-42 是创建的最有效的纳米传感器,它以 4.16 μM 的表观亲和力(Kd)测量乙醇,并涵盖 500 nM 至 12 μM 乙醇测量的生理范围。FLIPO-42 可以实时非侵入性地测量细菌、酵母和哺乳动物细胞中的乙醇动力学,证明了它作为在原核和真核系统中作为传感装置的功效。总之,建立了一套纳米传感器的原型,有可能实现对乙醇动态变化的监测,并在体内和体外以亚细胞分辨率研究其摄取和代谢。此外,一套新型纳米传感器的出现将为我们提供许多医学、科学、工业和环境应用的工具,这将有助于阐明它们在生物系统中的作用。