Suppr超能文献

解开“毛团”:基于适应性的生物网络渐近约简

Untangling the Hairball: Fitness-Based Asymptotic Reduction of Biological Networks.

作者信息

Proulx-Giraldeau Félix, Rademaker Thomas J, François Paul

机构信息

Ernest Rutherford Physics Building, McGill University, Montreal, Québec, Canada.

Ernest Rutherford Physics Building, McGill University, Montreal, Québec, Canada; Département de Physique Théorique, Université de Genève, Genève, Switzerland.

出版信息

Biophys J. 2017 Oct 17;113(8):1893-1906. doi: 10.1016/j.bpj.2017.08.036.

Abstract

Complex mathematical models of interaction networks are routinely used for prediction in systems biology. However, it is difficult to reconcile network complexities with a formal understanding of their behavior. Here, we propose a simple procedure (called ϕ¯) to reduce biological models to functional submodules, using statistical mechanics of complex systems combined with a fitness-based approach inspired by in silico evolution. The ϕ¯ algorithm works by putting parameters or combination of parameters to some asymptotic limit, while keeping (or slightly improving) the model performance, and requires parameter symmetry breaking for more complex models. We illustrate ϕ¯ on biochemical adaptation and on different models of immune recognition by T cells. An intractable model of immune recognition with close to a hundred individual transition rates is reduced to a simple two-parameter model. The ϕ¯ algorithm extracts three different mechanisms for early immune recognition, and automatically discovers similar functional modules in different models of the same process, allowing for model classification and comparison. Our procedure can be applied to biological networks based on rate equations using a fitness function that quantifies phenotypic performance.

摘要

相互作用网络的复杂数学模型在系统生物学中经常用于预测。然而,要将网络复杂性与对其行为的形式化理解协调起来是困难的。在此,我们提出一种简单的程序(称为ϕ¯),利用复杂系统的统计力学并结合受计算机模拟进化启发的基于适应度的方法,将生物学模型简化为功能子模块。ϕ¯算法通过将参数或参数组合置于某些渐近极限来起作用,同时保持(或略微提高)模型性能,并且对于更复杂的模型需要参数对称性破缺。我们通过生化适应以及T细胞免疫识别的不同模型来说明ϕ¯。一个具有近百个个体转换率的难以处理的免疫识别模型被简化为一个简单的双参数模型。ϕ¯算法提取出早期免疫识别的三种不同机制,并自动在同一过程的不同模型中发现相似的功能模块,从而实现模型分类和比较。我们的程序可以应用于基于速率方程的生物网络,使用量化表型性能的适应度函数。

相似文献

2
Principles of adaptive sorting revealed by in silico evolution.通过计算机模拟进化揭示自适应排序的原则。
Phys Rev Lett. 2013 May 24;110(21):218102. doi: 10.1103/PhysRevLett.110.218102. Epub 2013 May 21.
3
Mathematical modeling for evolution of heterogeneous modules in the brain.大脑中异质模块进化的数学建模。
Neural Netw. 2015 Feb;62:3-10. doi: 10.1016/j.neunet.2014.07.013. Epub 2014 Aug 1.
4
Evolving phenotypic networks in silico.在计算机模拟中不断演变的表型网络。
Semin Cell Dev Biol. 2014 Nov;35:90-7. doi: 10.1016/j.semcdb.2014.06.012. Epub 2014 Jun 20.
8
φ-evo: A program to evolve phenotypic models of biological networks.φ-evo:用于进化生物网络表型模型的程序。
PLoS Comput Biol. 2018 Jun 11;14(6):e1006244. doi: 10.1371/journal.pcbi.1006244. eCollection 2018 Jun.

引用本文的文献

本文引用的文献

3
Could a Neuroscientist Understand a Microprocessor?神经科学家能理解微处理器吗?
PLoS Comput Biol. 2017 Jan 12;13(1):e1005268. doi: 10.1371/journal.pcbi.1005268. eCollection 2017 Jan.
5
Bridging Mechanistic and Phenomenological Models of Complex Biological Systems.复杂生物系统的桥接机理模型与现象学模型
PLoS Comput Biol. 2016 May 17;12(5):e1004915. doi: 10.1371/journal.pcbi.1004915. eCollection 2016 May.
6
Reconstruction and Simulation of Neocortical Microcircuitry.重建与模拟新皮层微电路
Cell. 2015 Oct 8;163(2):456-92. doi: 10.1016/j.cell.2015.09.029.
10
Model reduction by manifold boundaries.基于流形边界的模型降阶。
Phys Rev Lett. 2014 Aug 29;113(9):098701. doi: 10.1103/PhysRevLett.113.098701.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验