Suppr超能文献

一种用于多微孔板中莲座状生长高通量筛选的自动化方法及其在胁迫条件下的验证

An Automated Method for High-Throughput Screening of Rosette Growth in Multi-Well Plates and Its Validation in Stress Conditions.

作者信息

De Diego Nuria, Fürst Tomáš, Humplík Jan F, Ugena Lydia, Podlešáková Kateřina, Spíchal Lukáš

机构信息

Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia.

Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Czech Academy of Sciences, Olomouc, Czechia.

出版信息

Front Plant Sci. 2017 Oct 4;8:1702. doi: 10.3389/fpls.2017.01702. eCollection 2017.

Abstract

High-throughput plant phenotyping platforms provide new possibilities for automated, fast scoring of several plant growth and development traits, followed over time using non-invasive sensors. Using is as a model offers important advantages for high-throughput screening with the opportunity to extrapolate the results obtained to other crops of commercial interest. In this study we describe the development of a highly reproducible high-throughput bioassay established using our OloPhen platform, suitable for analysis of rosette growth in multi-well plates. This method was successfully validated on example of multivariate analysis of rosette growth in different salt concentrations and the interaction with varying nutritional composition of the growth medium. Several traits such as changes in the rosette area, relative growth rate, survival rate and homogeneity of the population are scored using fully automated RGB imaging and subsequent image analysis. The assay can be used for fast screening of the biological activity of chemical libraries, phenotypes of transgenic or recombinant inbred lines, or to search for potential quantitative trait loci. It is especially valuable for selecting genotypes or growth conditions that improve plant stress tolerance.

摘要

高通量植物表型分析平台为利用非侵入式传感器对多种植物生长发育性状进行自动化、快速评分提供了新的可能性,这些性状可随时间进行跟踪。以其作为模型进行高通量筛选具有重要优势,有机会将所得结果外推至其他具有商业价值的作物。在本研究中,我们描述了一种使用我们的OloPhen平台建立的高度可重复的高通量生物测定法,适用于分析多孔板中的莲座叶生长。该方法在不同盐浓度下莲座叶生长的多变量分析以及与生长培养基不同营养成分的相互作用示例上成功得到验证。使用全自动RGB成像和后续图像分析对莲座叶面积变化、相对生长速率、存活率和群体同质性等多个性状进行评分。该测定法可用于快速筛选化学文库的生物活性、转基因或重组自交系的表型,或寻找潜在的数量性状位点。对于选择提高植物胁迫耐受性的基因型或生长条件尤其有价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5701/5632805/e2fb78e0d470/fpls-08-01702-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验