Suppr超能文献

利用夏克-哈特曼图像实时自动检测瞳孔及其边界的自适应光学视网膜成像。

Adaptive optics retinal imaging with automatic detection of the pupil and its boundary in real time using Shack-Hartmann images.

作者信息

de Castro Alberto, Sawides Lucie, Qi Xiaofeng, Burns Stephen A

出版信息

Appl Opt. 2017 Aug 20;56(24):6748-6754. doi: 10.1364/AO.56.006748.

Abstract

Retinal imaging with an adaptive optics (AO) system usually requires that the eye be centered and stable relative to the exit pupil of the system. Aberrations are then typically corrected inside a fixed circular pupil. This approach can be restrictive when imaging some subjects, since the pupil may not be round and maintaining a stable head position can be difficult. In this paper, we present an automatic algorithm that relaxes these constraints. An image quality metric is computed for each spot of the Shack-Hartmann image to detect the pupil and its boundary, and the control algorithm is applied only to regions within the subject's pupil. Images on a model eye as well as for five subjects were obtained to show that a system exit pupil larger than the subject's eye pupil could be used for AO retinal imaging without a reduction in image quality. This algorithm automates the task of selecting pupil size. It also may relax constraints on centering the subject's pupil and on the shape of the pupil.

摘要

使用自适应光学(AO)系统进行视网膜成像通常要求眼睛相对于系统的出瞳居中且稳定。然后通常在固定的圆形瞳孔内校正像差。当对某些受试者进行成像时,这种方法可能具有局限性,因为瞳孔可能不是圆形的,并且保持稳定的头部位置可能很困难。在本文中,我们提出了一种自动算法,该算法放宽了这些限制。为夏克-哈特曼图像的每个光斑计算图像质量指标,以检测瞳孔及其边界,并且控制算法仅应用于受试者瞳孔内的区域。获取了模型眼以及五名受试者的图像,以表明大于受试者眼睛瞳孔的系统出瞳可用于AO视网膜成像,而不会降低图像质量。该算法自动执行选择瞳孔大小的任务。它还可能放宽对受试者瞳孔居中以及瞳孔形状的限制。

相似文献

2
Pupil tracking with a Hartmann-Shack wavefront sensor.
J Biomed Opt. 2010 May-Jun;15(3):036022. doi: 10.1117/1.3447922.
3
Wavefront control in adaptive microscopy using Shack-Hartmann sensors with arbitrarily shaped pupils.
Opt Express. 2018 Jan 22;26(2):1655-1669. doi: 10.1364/OE.26.001655.
4
Matching convolved images to optically blurred images on the retina.
J Vis. 2022 Feb 1;22(2):12. doi: 10.1167/jov.22.2.12.
5
Multi-modal and multi-scale clinical retinal imaging system with pupil and retinal tracking.
Sci Rep. 2022 Jun 10;12(1):9577. doi: 10.1038/s41598-022-13631-1.
6
Dual-conjugate adaptive optics for wide-field high-resolution retinal imaging.
Opt Express. 2009 Mar 16;17(6):4454-67. doi: 10.1364/oe.17.004454.
7
Simulated annealing in ocular adaptive optics.
Opt Lett. 2006 Apr 1;31(7):939-41. doi: 10.1364/ol.31.000939.
8
Aberrations and Pupil location under corneal topography and Hartmann-Shack illumination conditions.
Invest Ophthalmol Vis Sci. 2009 Apr;50(4):1964-70. doi: 10.1167/iovs.08-2111. Epub 2008 Dec 5.
9
Retinal imaging with optical coherence tomography and low-loss adaptive optics using a 2.8-mm beam size.
J Biophotonics. 2019 Jun;12(6):e201800192. doi: 10.1002/jbio.201800192. Epub 2019 Mar 11.

引用本文的文献

1
Telecentric model eye for correction of image distortion in adaptive optics ophthalmoscopes.
Biomed Opt Express. 2025 Jun 16;16(7):2767-2791. doi: 10.1364/BOE.565589. eCollection 2025 Jul 1.
2
Ultrafast adaptive optics for imaging the living human eye.
Nat Commun. 2024 Nov 29;15(1):10409. doi: 10.1038/s41467-024-54687-z.
3
Evolution of adaptive optics retinal imaging [Invited].
Biomed Opt Express. 2023 Feb 28;14(3):1307-1338. doi: 10.1364/BOE.485371. eCollection 2023 Mar 1.
4
Multi-modal and multi-scale clinical retinal imaging system with pupil and retinal tracking.
Sci Rep. 2022 Jun 10;12(1):9577. doi: 10.1038/s41598-022-13631-1.
5
Cone Photoreceptors in Diabetic Patients.
Front Med (Lausanne). 2022 Mar 17;9:826643. doi: 10.3389/fmed.2022.826643. eCollection 2022.
6
Retinal adaptive optics imaging with a pyramid wavefront sensor.
Biomed Opt Express. 2021 Sep 2;12(10):5969-5990. doi: 10.1364/BOE.438915. eCollection 2021 Oct 1.
7
Cones in ageing and harsh environments: the neural economy hypothesis.
Ophthalmic Physiol Opt. 2020 Mar;40(2):88-116. doi: 10.1111/opo.12670. Epub 2020 Feb 4.
8
Adaptive optics imaging of the human retina.
Prog Retin Eye Res. 2019 Jan;68:1-30. doi: 10.1016/j.preteyeres.2018.08.002. Epub 2018 Aug 27.
9
Fixational eye movement: a negligible source of dynamic aberration.
Biomed Opt Express. 2018 Jan 22;9(2):717-727. doi: 10.1364/BOE.9.000717. eCollection 2018 Feb 1.

本文引用的文献

2
Vision science and adaptive optics, the state of the field.
Vision Res. 2017 Mar;132:3-33. doi: 10.1016/j.visres.2017.01.006. Epub 2017 Feb 27.
3
The Negative Cone Mosaic: A New Manifestation of the Optical Stiles-Crawford Effect in Normal Eyes.
Invest Ophthalmol Vis Sci. 2015 Nov;56(12):7043-50. doi: 10.1167/iovs.15-17022.
4
Non-common path aberration correction in an adaptive optics scanning ophthalmoscope.
Biomed Opt Express. 2014 Aug 15;5(9):3059-73. doi: 10.1364/BOE.5.003059. eCollection 2014 Sep 1.
5
Adaptive optics with pupil tracking for high resolution retinal imaging.
Biomed Opt Express. 2012 Feb 1;3(2):225-39. doi: 10.1364/BOE.3.000225. Epub 2012 Jan 3.
6
Improving wavefront boundary condition for in vivo high resolution adaptive optics ophthalmic imaging.
Biomed Opt Express. 2011 Dec 1;2(12):3309-20. doi: 10.1364/BOE.2.003309. Epub 2011 Nov 10.
7
High-resolution retinal imaging with micro adaptive optics system.
Appl Opt. 2011 Aug 1;50(22):4365-75. doi: 10.1364/AO.50.004365.
8
Woofer-tweeter adaptive optics scanning laser ophthalmoscopic imaging based on Lagrange-multiplier damped least-squares algorithm.
Biomed Opt Express. 2011 Jul 1;2(7):1986-2004. doi: 10.1364/BOE.2.001986. Epub 2011 Jun 17.
9
Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking.
J Opt Soc Am A Opt Image Sci Vis. 2010 Nov 1;27(11):A265-77. doi: 10.1364/JOSAA.27.00A265.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验