College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, 200092, Shanghai, China.
Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Rd 1239, 200092, Shanghai, China.
Angew Chem Int Ed Engl. 2017 Dec 4;56(49):15658-15662. doi: 10.1002/anie.201709738. Epub 2017 Nov 8.
Fabrication of hybrid MOF-on-MOF heteroarchitectures can create novel and multifunctional platforms to achieve desired properties. However, only MOFs with similar crystallographic parameters can be hybridized by the classical epitaxial growth method (EGM), which largely suppressed its applications. A general strategy, called internal extended growth method (IEGM), is demonstrated for the feasible assembly of MOFs with distinct crystallographic parameters in an MOF matrix. Various MOFs with diverse functions could be introduced in a modular MOF matrix to form 3D core-satellite pluralistic hybrid system. The number of different MOF crystals interspersed could be varied on demand. More importantly, the different MOF crystals distributed in individual domains could be used to further incorporate functional units or enhance target functions.
杂化 MOF-on-MOF 杂化结构的构建可以创造新颖的多功能平台,以实现所需的性质。然而,经典的外延生长法(EGM)只能将具有相似晶体学参数的 MOF 进行杂化,这极大地限制了其应用。本文提出了一种通用策略,称为内部扩展生长法(IEGM),用于在 MOF 基质中实现具有不同晶体学参数的 MOF 的可行组装。各种具有不同功能的 MOF 可以在模块化 MOF 基质中引入,形成 3D 核-卫星多元杂化体系。根据需要,可以改变不同 MOF 晶体的数量。更重要的是,分布在各个区域的不同 MOF 晶体可以进一步用于引入功能单元或增强目标功能。