Suppr超能文献

金属有机骨架在生物界面:合成策略与应用。

Metal-Organic Frameworks at the Biointerface: Synthetic Strategies and Applications.

机构信息

School of Physical Sciences, The University of Adelaide , Adelaide, South Australia 5005, Australia.

Institute of Physical and Theoretical Chemistry, Graz University of Technology , Stremayrgasse 9, Graz 8010, Austria.

出版信息

Acc Chem Res. 2017 Jun 20;50(6):1423-1432. doi: 10.1021/acs.accounts.7b00090. Epub 2017 May 10.

Abstract

Many living organisms are capable of producing inorganic materials of precisely controlled structure and morphology. This ubiquitous process is termed biomineralization and is observed in nature from the macroscale (e.g., formation of exoskeletons) down to the nanoscale (e.g., mineral storage and transportation in proteins). Extensive research efforts have pursued replicating this chemistry with the overarching aims of synthesizing new materials of unprecedented physical properties and understanding the complex mechanisms that occur at the biological-inorganic interface. Recently, we demonstrated that a class of porous materials termed metal-organic frameworks (MOFs) can spontaneously form on protein-based hydrogels via a process analogous to natural matrix-mediated biomineralization. Subsequently, this strategy was extended to functional biomacromolecules, including proteins and DNA, which have been shown to seed and accelerate crystallization of MOFs. Alternative strategies exploit co-precipitating agents such as polymers to induce MOF particle formation thus facilitating protein encapsulation within the porous crystals. In these examples the rigid molecular architecture of the MOF was found to form a protective coating around the biomacromolecule offering improved stability to external environments that would normally lead to its degradation. In this way, the MOF shell mimics the protective function of a biomineralized exoskeleton. Other methodologies have also been explored to encapsulate enzymes within MOF structures, including the fabrication of polycrystalline hollow MOF microcapsules that preserve the original enzyme functionality over several batch reaction cycles. The potential to design MOFs of varied pore size and chemical functionality has underpinned studies describing the postsynthesis infiltration of enzymes into MOF pore networks and bioconjugation strategies for the decoration of the MOF outer surface, respectively. These methods and configurations allow for customized biocomposites. MOF biocomposites have been extended from simple proteins to complex biological systems including viruses, living yeast cells, and bacteria. Indeed, a noteworthy result was that cells encapsulated within a crystalline MOF shell remain viable after exposure to a medium containing lytic enzymes. Furthermore, the cells can adsorb nutrients (glucose) through the MOF shell but cease reproducing until the MOF casing is removed, at which point normal cellular activity is fully restored. The field of MOF biocomposites is expansive and rapidly developing toward different applied research fields including protection and delivery of biopharmaceuticals, biosensing, biocatalysis, biobanking, and cell and virus manipulation. This Account describes the current progress of MOFs toward biotechnological applications highlighting the different strategies for the preparation of biocomposites, the developmental milestones, the challenges, and the potential impact of MOFs to the field.

摘要

许多生物体能精确地合成具有特定结构和形貌的无机材料。这种无处不在的过程被称为生物矿化,在自然界中从宏观尺度(例如,外骨骼的形成)到纳米尺度(例如,蛋白质中的矿物质储存和运输)都有观察到。广泛的研究努力旨在复制这种化学过程,其总体目标是合成具有前所未有的物理性质的新材料,并理解在生物-无机界面发生的复杂机制。最近,我们证明了一类称为金属有机骨架(MOF)的多孔材料可以通过类似于天然基质介导的生物矿化的过程,自发地在基于蛋白质的水凝胶上形成。随后,该策略被扩展到功能生物大分子,包括蛋白质和 DNA,它们已被证明能引发和加速 MOF 的结晶。替代策略利用共沉淀剂(如聚合物)诱导 MOF 颗粒形成,从而促进 MOF 晶体内部的蛋白质封装。在这些例子中,MOF 的刚性分子结构被发现围绕生物大分子形成一层保护性涂层,使其对通常会导致其降解的外部环境具有更好的稳定性。通过这种方式,MOF 壳模仿了生物矿化外骨骼的保护功能。还探索了其他方法来将酶封装在 MOF 结构内,包括制造保持原始酶功能的多晶空心 MOF 微胶囊,在几个批次反应循环中。设计具有不同孔径和化学功能的 MOF 的潜力支持了描述酶在 MOF 孔网络中的后合成渗透和 MOF 外表面的生物偶联策略的研究。这些方法和结构允许定制的生物复合材料。MOF 生物复合材料已从简单的蛋白质扩展到包括病毒、活酵母细胞和细菌在内的复杂生物系统。事实上,一个值得注意的结果是,暴露于含有溶酶体的介质中后,封装在结晶 MOF 壳内的细胞仍然存活。此外,细胞可以通过 MOF 壳吸收营养物质(葡萄糖),但在 MOF 外壳被去除之前停止繁殖,此时细胞的正常活动完全恢复。MOF 生物复合材料领域广阔,正在迅速向不同的应用研究领域发展,包括生物制药的保护和输送、生物传感、生物催化、生物储存以及细胞和病毒的操作。本综述描述了 MOF 向生物技术应用的当前进展,重点介绍了制备生物复合材料的不同策略、发展里程碑、挑战以及 MOF 对该领域的潜在影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验