Kriuchevskyi I, Wittmer J P, Meyer H, Baschnagel J
Institut Charles Sadron, Université de Strasbourg and CNRS, 23 rue du Loess, 67034 Strasbourg Cedex, France.
Phys Rev Lett. 2017 Oct 6;119(14):147802. doi: 10.1103/PhysRevLett.119.147802. Epub 2017 Oct 4.
Using molecular dynamics simulation of a standard coarse-grained polymer glass model, we investigate by means of the stress-fluctuation formalism the shear modulus μ as a function of temperature T and sampling time Δt. While the ensemble-averaged modulus μ(T) is found to decrease continuously for all Δt sampled, its standard deviation δμ(T) is nonmonotonic, with a striking peak at the glass transition. Confirming the effective time-translational invariance of our systems, μ(Δt) can be understood using a weighted integral over the shear-stress relaxation modulus G(t). While the crossover of μ(T) gets sharper with an increasing Δt, the peak of δμ(T) becomes more singular. It is thus elusive to predict the modulus of a single configuration at the glass transition.
通过对标准粗粒化聚合物玻璃模型进行分子动力学模拟,我们借助应力涨落形式理论研究了剪切模量μ随温度T和采样时间Δt的变化关系。虽然发现对于所有采样的Δt,系综平均模量μ(T)都持续下降,但其标准差δμ(T)并非单调变化,在玻璃化转变处有一个显著的峰值。证实了我们系统的有效时间平移不变性后,μ(Δt)可以通过对剪切应力松弛模量G(t)进行加权积分来理解。虽然随着Δt的增加,μ(T)的转变变得更加明显,但δμ(T)的峰值变得更加奇异。因此,预测玻璃化转变时单个构型的模量是难以捉摸的。