Suppr超能文献

Facebook 虚假自我呈现行为与负面心理健康。

Facebook False Self-Presentation Behaviors and Negative Mental Health.

机构信息

School of Psychology and Counselling, Queensland University of Technology , Queensland, Australia .

出版信息

Cyberpsychol Behav Soc Netw. 2018 Jan;21(1):40-49. doi: 10.1089/cyber.2016.0647. Epub 2017 Oct 20.

Abstract

As research examining what constitutes Facebook false self-presentation is lacking, the aim of this study was to develop a preliminary inventory of Facebook false self-presentation behaviors, as well as identify predictors and possible outcomes. Participants (N = 211) completed questions regarding frequency of engagement in Facebook false self-presentation behaviors, as well as self-esteem, social influences, motivation strategies, well-being, depression, anxiety, and stress. Results indicated the presence of two distinct false self-presentation behaviors: lying (e.g., untruthful status updates, profile creation) and liking behaviors (e.g., liking posts dishonestly), each associated with different predictors and outcomes. Results indicated that moral norms significantly predicted lying behaviors; and age, self-esteem, group norms, and moral norms significantly predicted liking behaviors. Unexpectedly, liking behaviors were associated with depression, anxiety, and stress, whereas lying behaviors were related to anxiety only. Findings highlight associations between online self-presentation strategies, in particular liking behaviors, on Facebook and possible offline negative mental health.

摘要

由于缺乏对构成 Facebook 虚假自我呈现的研究,本研究旨在开发一个初步的 Facebook 虚假自我呈现行为清单,并确定其预测因素和可能的结果。参与者(N=211)完成了关于 Facebook 虚假自我呈现行为的频率、自尊、社会影响、动机策略、幸福感、抑郁、焦虑和压力的问题。结果表明存在两种不同的虚假自我呈现行为:说谎(例如,不真实的状态更新、个人资料创建)和喜欢行为(例如,不诚实地点赞帖子),每种行为都与不同的预测因素和结果相关。结果表明,道德规范显著预测了说谎行为;年龄、自尊、群体规范和道德规范显著预测了喜欢行为。出乎意料的是,喜欢行为与抑郁、焦虑和压力有关,而说谎行为仅与焦虑有关。研究结果强调了 Facebook 上在线自我呈现策略(特别是喜欢行为)与可能的线下负面心理健康之间的关联。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验