School of Chemical Science and Engineering, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, Tongji University, Shanghai, 200092, China.
Institute of New Energy, School of Chemistry and Chemical Engineering, Shaoxing University, 508 Huancheng West Road, Shaoxing, Zhejiang, 312000, China.
Adv Sci (Weinh). 2022 Nov;9(31):e2203941. doi: 10.1002/advs.202203941. Epub 2022 Aug 25.
Emerging photoelectrocatalysis (PEC) systems synergize the advantages of electrocatalysis (EC) and photocatalysis (PC) and are considered a green and efficient approach to CO conversion. However, improving the selectivity and conversion rate remains a major challenge. Strategies mimicking natural photosynthesis provide a prospective way to convert CO with high efficiency. Herein, several typical strategies are described for constructing biomimetic photoelectric functional interfaces; such interfaces include metal cocatalysts/semiconductors, small molecules/semiconductors, molecular catalysts/semiconductors, MOFs/semiconductors, and microorganisms/semiconductors. The biomimetic PEC interface must have enhanced CO adsorption capacity, preferentially activate CO , and have an efficient conversion ability; with these properties, it can activate CO bonds effectively and promote electron transfer and CC coupling to convert CO to single-carbon or multicarbon products. Interfacial electron transfer and proton coupling on the biomimetic PEC interface are also discussed to clarify the mechanism of CO reduction. Finally, the existing challenges and perspectives for biomimetic photoelectrocatalytic CO reduction are presented.
新兴的光电催化 (PEC) 系统结合了电催化 (EC) 和光催化 (PC) 的优势,被认为是一种绿色高效的 CO 转化方法。然而,提高选择性和转化率仍然是一个主要挑战。模拟自然光合作用的策略为高效转化 CO 提供了有前景的途径。本文描述了几种构建仿生光电功能界面的典型策略;这些界面包括金属助催化剂/半导体、小分子/半导体、分子催化剂/半导体、MOFs/半导体和微生物/半导体。仿生 PEC 界面必须具有增强的 CO 吸附能力、优先激活 CO 和高效转化能力;具有这些特性,可以有效地激活 CO 键,促进电子转移和 CC 偶联,将 CO 转化为单碳或多碳产物。还讨论了仿生 PEC 界面上的界面电子转移和质子偶联,以阐明 CO 还原的机理。最后,提出了仿生光电催化 CO 还原目前存在的挑战和展望。