Graessl Melanie, Koch Johannes, Calderon Abram, Kamps Dominic, Banerjee Soumya, Mazel Tomáš, Schulze Nina, Jungkurth Jana Kathrin, Patwardhan Rutuja, Solouk Djamschid, Hampe Nico, Hoffmann Bernd, Dehmelt Leif, Nalbant Perihan
Department of Molecular Cell Biology, Center for Medical Biotechnology, University of Duisburg-Essen, Essen, Germany.
Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology and Fakultät für Chemie und Chemische Biologie, TU Dortmund University, Dortmund, Germany.
J Cell Biol. 2017 Dec 4;216(12):4271-4285. doi: 10.1083/jcb.201706052. Epub 2017 Oct 20.
Rho GTPase-based signaling networks control cellular dynamics by coordinating protrusions and retractions in space and time. Here, we reveal a signaling network that generates pulses and propagating waves of cell contractions. These dynamic patterns emerge via self-organization from an activator-inhibitor network, in which the small GTPase Rho amplifies its activity by recruiting its activator, the guanine nucleotide exchange factor GEF-H1. Rho also inhibits itself by local recruitment of actomyosin and the associated RhoGAP Myo9b. This network structure enables spontaneous, self-limiting patterns of subcellular contractility that can explore mechanical cues in the extracellular environment. Indeed, actomyosin pulse frequency in cells is altered by matrix elasticity, showing that coupling of contractility pulses to environmental deformations modulates network dynamics. Thus, our study reveals a mechanism that integrates intracellular biochemical and extracellular mechanical signals into subcellular activity patterns to control cellular contractility dynamics.
基于Rho GTPase的信号网络通过在空间和时间上协调细胞的突起和回缩来控制细胞动力学。在此,我们揭示了一个能产生细胞收缩脉冲和传播波的信号网络。这些动态模式通过自组织从一个激活剂-抑制剂网络中出现,其中小GTPase Rho通过招募其激活剂鸟嘌呤核苷酸交换因子GEF-H1来放大自身活性。Rho还通过局部招募肌动球蛋白和相关的RhoGAP Myo9b来抑制自身。这种网络结构能够实现亚细胞收缩性的自发、自我限制模式,从而可以探索细胞外环境中的机械信号。实际上,细胞中肌动球蛋白的脉冲频率会因基质弹性而改变,这表明收缩脉冲与环境变形的耦合会调节网络动力学。因此,我们的研究揭示了一种将细胞内生化信号和细胞外机械信号整合到亚细胞活动模式中以控制细胞收缩动力学的机制。