Suppr超能文献

酶原鉴定能够发现新型的苯丙氨酸解氨酶酶。

Zymophore identification enables the discovery of novel phenylalanine ammonia lyase enzymes.

机构信息

School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom.

SYNBIOCHEM, Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom.

出版信息

Sci Rep. 2017 Oct 20;7(1):13691. doi: 10.1038/s41598-017-13990-0.

Abstract

The suite of biological catalysts found in Nature has the potential to contribute immensely to scientific advancements, ranging from industrial biotechnology to innovations in bioenergy and medical intervention. The endeavour to obtain a catalyst of choice is, however, wrought with challenges. Herein we report the design of a structure-based annotation system for the identification of functionally similar enzymes from diverse sequence backgrounds. Focusing on an enzymatic activity with demonstrated synthetic and therapeutic relevance, five new phenylalanine ammonia lyase (PAL) enzymes were discovered and characterised with respect to their potential applications. The variation and novelty of various desirable traits seen in these previously uncharacterised enzymes demonstrates the importance of effective sequence annotation in unlocking the potential diversity that Nature provides in the search for tailored biological tools. This new method has commercial relevance as a strategy for assaying the 'evolvability' of certain enzyme features, thus streamlining and informing protein engineering efforts.

摘要

自然界中存在的一系列生物催化剂有可能为科学进步做出巨大贡献,从工业生物技术到生物能源和医学干预的创新。然而,获得所需催化剂的努力充满了挑战。在这里,我们报告了一种基于结构的注释系统的设计,用于从不同序列背景中鉴定功能相似的酶。本研究聚焦于一种具有合成和治疗相关性的酶活性,发现并鉴定了五个新的苯丙氨酸氨裂解酶(PAL),并研究了它们在潜在应用方面的特性。这些以前未被表征的酶中出现的各种理想特征的变化和新颖性表明,在寻找定制的生物工具时,有效的序列注释对于挖掘自然界提供的潜在多样性至关重要。这种新方法在商业上具有重要意义,是一种用于评估某些酶特征“可进化性”的策略,从而简化并为蛋白质工程提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc8f/5651878/5e68da78b617/41598_2017_13990_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验