Suppr超能文献

使用动态流感流行率方法进行公共卫生监测和临床诊断的自动化流感病例检测。

Automated influenza case detection for public health surveillance and clinical diagnosis using dynamic influenza prevalence method.

机构信息

Real-time Outbreak and Disease Surveillance Laboratory (RODS), Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA.

Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

J Public Health (Oxf). 2018 Dec 1;40(4):878-885. doi: 10.1093/pubmed/fdx141.

Abstract

OBJECTIVES

To assess the performance of a Bayesian case detector (BCD) for influenza surveillance and clinical diagnosis.

METHODS

BCD uses a Bayesian network classifier to compute the posterior probability of a patient having influenza based on 31 findings from narrative clinical notes. To assess the potential for disease surveillance, we calculated area under the receiver operating characteristic curve (AUC) to indicate BCD's ability to differentiate between influenza and non-influenza encounters in emergency department settings. To assess the potential for clinical diagnosis, we measured AUC for diagnosing influenza cases among encounters having influenza-like illnesses. We also evaluated the performance of BCD using dynamically estimated influenza prevalence, and measured sensitivity, specificity and positive predictive value.

RESULTS

For influenza surveillance, BCD differentiated between influenza and non-influenza encounters well with an AUC of 0.90 and 0.97 with dynamic influenza prevalence (P < 0.0001). For clinical diagnosis, the addition of dynamic influenza prevalence to BCD significantly improved AUC from 0.63 to 0.85 to distinguish influenza from other causes of influenza-like illness.

CONCLUSIONS AND POLICY IMPLICATIONS

BCD can serve as an influenza surveillance and a differential diagnosis tool via our dynamic prevalence approach. It enhances the communication between public health and clinical practice.

摘要

目的

评估贝叶斯病例探测器(BCD)在流感监测和临床诊断中的性能。

方法

BCD 使用贝叶斯网络分类器根据 31 项叙事临床记录中的发现计算患者患流感的后验概率。为了评估疾病监测的潜力,我们计算了接收者操作特征曲线下的面积(AUC),以表示 BCD 在急诊环境中区分流感和非流感就诊的能力。为了评估临床诊断的潜力,我们测量了在有流感样疾病的就诊中诊断流感病例的 AUC。我们还使用动态估计的流感流行率评估了 BCD 的性能,并测量了敏感性、特异性和阳性预测值。

结果

对于流感监测,BCD 能够很好地区分流感和非流感就诊,AUC 分别为 0.90 和 0.97,动态流感流行率(P<0.0001)。对于临床诊断,将动态流感流行率添加到 BCD 中,可将区分流感和其他流感样疾病病因的 AUC 从 0.63 显著提高到 0.85。

结论和政策意义

BCD 可以通过我们的动态流行率方法作为流感监测和鉴别诊断工具。它增强了公共卫生和临床实践之间的沟通。

相似文献

5
A Bayesian dynamic model for influenza surveillance.一种用于流感监测的贝叶斯动态模型。
Stat Med. 2006 Jun 15;25(11):1803-16; discussion 1817-25. doi: 10.1002/sim.2566.
6
Electronic Syndromic Surveillance for Influenza-Like Illness Across Treatment Settings.跨治疗环境的流感样疾病电子症状监测
Infect Control Hosp Epidemiol. 2017 Apr;38(4):393-398. doi: 10.1017/ice.2016.299. Epub 2016 Dec 19.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验