文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于预测首次自杀未遂的电子健康记录的自然语言处理和机器学习

Natural language processing and machine learning of electronic health records for prediction of first-time suicide attempts.

作者信息

Tsui Fuchiang R, Shi Lingyun, Ruiz Victor, Ryan Neal D, Biernesser Candice, Iyengar Satish, Walsh Colin G, Brent David A

机构信息

Tsui Laboratory, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.

Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.

出版信息

JAMIA Open. 2021 Mar 17;4(1):ooab011. doi: 10.1093/jamiaopen/ooab011. eCollection 2021 Jan.


DOI:10.1093/jamiaopen/ooab011
PMID:33758800
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7966858/
Abstract

OBJECTIVE: Limited research exists in predicting first-time suicide attempts that account for two-thirds of suicide decedents. We aimed to predict first-time suicide attempts using a large data-driven approach that applies natural language processing (NLP) and machine learning (ML) to unstructured (narrative) clinical notes and structured electronic health record (EHR) data. METHODS: This case-control study included patients aged 10-75 years who were seen between 2007 and 2016 from emergency departments and inpatient units. Cases were first-time suicide attempts from coded diagnosis; controls were randomly selected without suicide attempts regardless of demographics, following a ratio of nine controls per case. Four data-driven ML models were evaluated using 2-year historical EHR data prior to suicide attempt or control index visits, with prediction windows from 7 to 730 days. Patients without any historical notes were excluded. Model evaluation on accuracy and robustness was performed on a blind dataset (30% cohort). RESULTS: The study cohort included 45 238 patients (5099 cases, 40 139 controls) comprising 54 651 variables from 5.7 million structured records and 798 665 notes. Using both unstructured and structured data resulted in significantly greater accuracy compared to structured data alone (area-under-the-curve [AUC]: 0.932 vs. 0.901  < .001). The best-predicting model utilized 1726 variables with AUC = 0.932 (95% CI, 0.922-0.941). The model was robust across multiple prediction windows and subgroups by demographics, points of historical most recent clinical contact, and depression diagnosis history. CONCLUSIONS: Our large data-driven approach using both structured and unstructured EHR data demonstrated accurate and robust first-time suicide attempt prediction, and has the potential to be deployed across various populations and clinical settings.

摘要

目的:在预测占自杀死亡者三分之二的首次自杀未遂方面,现有研究有限。我们旨在采用一种大数据驱动的方法来预测首次自杀未遂,该方法将自然语言处理(NLP)和机器学习(ML)应用于非结构化(叙述性)临床记录和结构化电子健康记录(EHR)数据。 方法:本病例对照研究纳入了2007年至2016年间在急诊科和住院部就诊的10至75岁患者。病例为编码诊断的首次自杀未遂;对照组在不考虑人口统计学特征的情况下随机选择,且无自杀未遂情况,病例与对照的比例为1:9。使用自杀未遂或对照指标就诊前2年的历史EHR数据对四个数据驱动的ML模型进行评估,预测窗口为7至730天。排除没有任何历史记录的患者。在一个盲数据集(队列的30%)上对模型的准确性和稳健性进行评估。 结果:研究队列包括45238名患者(5099例病例,40139名对照),包含来自570万条结构化记录和798665条记录的54651个变量。与仅使用结构化数据相比,同时使用非结构化和结构化数据可显著提高准确性(曲线下面积[AUC]:0.932对0.901,P<0.001)。最佳预测模型使用了1726个变量,AUC = 0.932(95%CI,0.922 - 0.941)。该模型在多个预测窗口以及按人口统计学特征、历史上最近临床接触点和抑郁诊断史划分的亚组中都具有稳健性。 结论:我们使用结构化和非结构化EHR数据相结合的大数据驱动方法,证明了对首次自杀未遂的预测准确且稳健,并且有可能在不同人群和临床环境中得到应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fb1/7966858/e06997aa91ef/ooab011f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fb1/7966858/874beb441078/ooab011f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fb1/7966858/16e0401857e1/ooab011f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fb1/7966858/09b8074e8ff7/ooab011f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fb1/7966858/6ef2d8b30c14/ooab011f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fb1/7966858/df7addb0066a/ooab011f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fb1/7966858/e06997aa91ef/ooab011f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fb1/7966858/874beb441078/ooab011f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fb1/7966858/16e0401857e1/ooab011f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fb1/7966858/09b8074e8ff7/ooab011f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fb1/7966858/6ef2d8b30c14/ooab011f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fb1/7966858/df7addb0066a/ooab011f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fb1/7966858/e06997aa91ef/ooab011f6.jpg

相似文献

[1]
Natural language processing and machine learning of electronic health records for prediction of first-time suicide attempts.

JAMIA Open. 2021-3-17

[2]
Leveraging Natural Language Processing to Improve Electronic Health Record Suicide Risk Prediction for Veterans Health Administration Users.

J Clin Psychiatry. 2023-6-19

[3]
Leveraging unstructured electronic medical record notes to derive population-specific suicide risk models.

Psychiatry Res. 2022-9

[4]
Natural language processing of clinical mental health notes may add predictive value to existing suicide risk models.

Psychol Med. 2021-6

[5]
Risk prediction using natural language processing of electronic mental health records in an inpatient forensic psychiatry setting.

J Biomed Inform. 2018-8-14

[6]
Prediction of Suicide Attempts Using Clinician Assessment, Patient Self-report, and Electronic Health Records.

JAMA Netw Open. 2022-1-4

[7]
Predicting future falls in older people using natural language processing of general practitioners' clinical notes.

Age Ageing. 2023-4-1

[8]
Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records.

PLoS One. 2019-2-19

[9]
Determining Distinct Suicide Attempts From Recurrent Electronic Health Record Codes: Classification Study.

JMIR Form Res. 2024-1-8

[10]
Automated detection of substance use information from electronic health records for a pediatric population.

J Am Med Inform Assoc. 2021-9-18

引用本文的文献

[1]
Childhood Suicide Risk in the Emergency Department.

JAMA Netw Open. 2025-7-1

[2]
Leveraging Natural Language Processing for Psychiatric Phenotyping from Spanish Electronic Health Records: Enabling the Investigation of Transdiagnostic Symptom Profiles at Scale.

Complex Psychiatry. 2025-6-7

[3]
Characterisation of serious mental illness trajectories through transdiagnostic clinical features.

Br J Psychiatry. 2025-6-23

[4]
Continuous time and dynamic suicide attempt risk prediction with neural ordinary differential equations.

NPJ Digit Med. 2025-3-13

[5]
Patients prefer human psychiatrists over chatbots: a cross-sectional study.

Croat Med J. 2025-2-28

[6]
Artificial Intelligence in Psychiatry: A Review of Biological and Behavioral Data Analyses.

Diagnostics (Basel). 2025-2-11

[7]
Prediction of early-onset bipolar using electronic health records.

J Child Psychol Psychiatry. 2025-8

[8]
Improving musculoskeletal care with AI enhanced triage through data driven screening of referral letters.

NPJ Digit Med. 2025-2-14

[9]
Using Structured Codes and Free-Text Notes to Measure Information Complementarity in Electronic Health Records: Feasibility and Validation Study.

J Med Internet Res. 2025-2-13

[10]
Artificial intelligence in mental health care: a systematic review of diagnosis, monitoring, and intervention applications.

Psychol Med. 2025-2-6

本文引用的文献

[1]
Variation in patterns of health care before suicide: A population case-control study.

Prev Med. 2019-8-7

[2]
Prediction Models for Suicide Attempts and Deaths: A Systematic Review and Simulation.

JAMA Psychiatry. 2019-6-1

[3]
Use of natural language processing in electronic medical records to identify pregnant women with suicidal behavior: towards a solution to the complex classification problem.

Eur J Epidemiol. 2018-12-10

[4]
Comparison of MetaMap and cTAKES for entity extraction in clinical notes.

BMC Med Inform Decis Mak. 2018-9-14

[5]
Epidemiology of Suicide and the Psychiatric Perspective.

Int J Environ Res Public Health. 2018-7-6

[6]
Predicting Suicide Attempts and Suicide Deaths Following Outpatient Visits Using Electronic Health Records.

Am J Psychiatry. 2018-5-24

[7]
Predicting suicide attempts in adolescents with longitudinal clinical data and machine learning.

J Child Psychol Psychiatry. 2018-4-30

[8]
Accuracy of risk scales for predicting repeat self-harm and suicide: a multicentre, population-level cohort study using routine clinical data.

BMC Psychiatry. 2018-4-25

[9]
Issues in Developing a Surveillance Case Definition for Nonfatal Suicide Attempt and Intentional Self-harm Using International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) Coded Data.

Natl Health Stat Report. 2018-2

[10]
Suicidal Behavior and Non-Suicidal Self-Injury in Emergency Departments Underestimated by Administrative Claims Data.

Crisis. 2018-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索