Barbour Christopher, Kosa Peter, Komori Mika, Tanigawa Makoto, Masvekar Ruturaj, Wu Tianxia, Johnson Kory, Douvaras Panagiotis, Fossati Valentina, Herbst Ronald, Wang Yue, Tan Keith, Greenwood Mark, Bielekova Bibiana
Neuroimmunological Diseases Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD.
Department of Mathematical Sciences, Montana State University, Bozeman, MT.
Ann Neurol. 2017 Nov;82(5):795-812. doi: 10.1002/ana.25083.
Biomarkers aid diagnosis, allow inexpensive screening of therapies, and guide selection of patient-specific therapeutic regimens in most internal medicine disciplines. In contrast, neurology lacks validated measurements of the physiological status, or dysfunction(s) of cells of the central nervous system (CNS). Accordingly, patients with chronic neurological diseases are often treated with a single disease-modifying therapy without understanding patient-specific drivers of disability. Therefore, using multiple sclerosis (MS) as an example of a complex polygenic neurological disease, we sought to determine whether cerebrospinal fluid (CSF) biomarkers are intraindividually stable, cell type-, disease- and/or process-specific, and responsive to therapeutic intervention.
We used statistical learning in a modeling cohort (n = 225) to develop diagnostic classifiers from DNA-aptamer-based measurements of 1,128 CSF proteins. An independent validation cohort (n = 85) assessed the reliability of derived classifiers. The biological interpretation resulted from in vitro modeling of primary or stem cell-derived human CNS cells and cell lines.
The classifier that differentiates MS from CNS diseases that mimic MS clinically, pathophysiologically, and on imaging achieved a validated area under the receiver operating characteristic curve (AUROC) of 0.98, whereas the classifier that differentiates relapsing-remitting from progressive MS achieved a validated AUROC of 0.91. No classifiers could differentiate primary progressive from secondary progressive MS better than random guessing. Treatment-induced changes in biomarkers greatly exceeded intraindividual and technical variabilities of the assay.
CNS biological processes reflected by CSF biomarkers are robust, stable, disease specific, or even disease stage specific. This opens opportunities for broad utilization of CSF biomarkers in drug development and precision medicine for CNS disorders. Ann Neurol 2017;82:795-812.
生物标志物有助于疾病诊断,能对治疗方法进行低成本筛查,并在大多数内科领域指导针对患者个体的治疗方案选择。相比之下,神经病学领域缺乏对中枢神经系统(CNS)细胞生理状态或功能障碍的有效测量方法。因此,患有慢性神经疾病的患者常常接受单一的疾病修饰治疗,却并不了解导致个体残疾的驱动因素。所以,我们以多发性硬化症(MS)这种复杂的多基因神经疾病为例,试图确定脑脊液(CSF)生物标志物在个体内是否稳定、是否具有细胞类型、疾病和/或病程特异性,以及是否对治疗干预有反应。
我们在一个建模队列(n = 225)中运用统计学习方法,基于对1128种脑脊液蛋白的DNA适配体测量结果开发诊断分类器。一个独立验证队列(n = 85)评估了所得分类器的可靠性。生物学解释源于对原代或干细胞衍生的人类中枢神经系统细胞及细胞系的体外建模。
将MS与临床、病理生理及影像学表现上类似MS的中枢神经系统疾病区分开来的分类器,在受试者操作特征曲线下面积(AUROC)的验证值为0.98,而区分复发缓解型MS与进展型MS的分类器,其验证后的AUROC为0.91。没有分类器在区分原发进展型MS和继发进展型MS方面比随机猜测表现得更好。生物标志物的治疗诱导变化大大超过了检测方法的个体内和技术变异性。
脑脊液生物标志物所反映的中枢神经系统生物学过程是强大、稳定、疾病特异性的,甚至是疾病阶段特异性的。这为脑脊液生物标志物在中枢神经系统疾病的药物研发和精准医学中的广泛应用开辟了道路。《神经病学纪要》2017年;82:795 - 812。