Suppr超能文献

采用氯化钡化学沉淀法去除颜料工业废水中的高浓度硫酸盐:响应面法和人工神经网络模型方法。

Removal of high concentration of sulfate from pigment industry effluent by chemical precipitation using barium chloride: RSM and ANN modeling approach.

机构信息

Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu, India.

Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu, India.

出版信息

J Environ Manage. 2018 Jan 15;206:69-76. doi: 10.1016/j.jenvman.2017.10.017. Epub 2017 Oct 20.

Abstract

Sulfate ions pose a major threat and challenge in the treatment of industrial effluents. The sample of wastewater obtained from a pigment industry contained large quantities of sulfate in the form of sodium sulfate which resulted in high TDS. As the removal of sulfate from pigment industry effluent was not reported previously, this work was focused on removing the sulfate ions from the effluent by chemical precipitation using barium chloride. The efficiency of sulfate removal was nearly 100% at an excess dosage of barium chloride, which precipitates the dissolved sulfate ions in the form of barium sulfate. Optimization of the parameters was done using Response Surface Methodology (RSM). This work is the first attempt for modeling the removal of sulfate from pigment industry effluent using RSM and Artificial Neural Network (ANN). Prediction by both the models was evaluated and both of them exhibited good performance (R value > 0.99). It was observed that the prediction by RSM (R value 0.9986) was closer to the experimental results than ANN prediction (R value 0.9955). The influence on the pH and conductivity of the solution by dosage of precipitant was also studied. The formation of barium sulfate was confirmed by characterization of the precipitate. Therefore, the sulfate removed from the effluent was converted into a commercially valuable precipitate.

摘要

硫酸根离子在工业废水处理中构成了主要的威胁和挑战。从一家颜料厂获得的废水样本中,以硫酸钠的形式存在大量的硫酸盐,导致总溶解固体(TDS)很高。由于以前没有报道过从颜料厂废水中去除硫酸盐的方法,因此这项工作的重点是通过使用氯化钡进行化学沉淀来去除废水中的硫酸盐离子。在氯化钡过量的情况下,硫酸盐的去除效率接近 100%,因为它会以硫酸钡的形式沉淀溶解的硫酸盐离子。使用响应面法(RSM)对参数进行了优化。这是首次尝试使用 RSM 和人工神经网络(ANN)对从颜料厂废水中去除硫酸盐进行建模。对两种模型的预测进行了评估,结果都表现出了良好的性能(R 值>0.99)。结果表明,RSM 的预测(R 值为 0.9986)比 ANN 预测(R 值为 0.9955)更接近实验结果。还研究了沉淀剂量对溶液 pH 值和电导率的影响。通过沉淀的特性确定了硫酸钡的形成。因此,从废水中去除的硫酸盐转化为具有商业价值的沉淀。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验