Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:556-559. doi: 10.1109/EMBC.2017.8036885.
Accurate assessment of pulmonary nodules can help to diagnose the serious degree of lung cancer. In most computed aided diagnosis (CADx) systems, the feature extraction module plays quite an important role in classifying pulmonary nodules based on different attributes of them. To precisely evaluate the malignancy of an unknown pulmonary nodule, this paper first proposes a novel pixel value space statistics map (PVSSM) for pulmonary nodules classification. By means of PVSSM this study can transform an original two-dimensional (2D) or three-dimensional (3D) pulmonary nodule into a 2D feature matrix, which contributes to better classifying a pulmonary nodule. To validate the proposed method, this study assembled 5385 valid 3D nodules from 1006 cases in LIDC-IDRI database. This study extracts sets of features from the created feature matrixes by singular value decomposition (SVD) method. Using several popular classifiers including KNN, random forest and SVM, we acquire the classification accuracies of 77.29%, 80.07% and 84.21%, respectively. Moreover, this study also utilizes the convolutional neural network (CNN) to assess the malignancy of nodules and the sensitivity, specificity and area under the curve (AUC) reach up to 86.0%, 88.5% and 0.913, respectively. Experiments demonstrate that the PVSSM has a benefit for nodules classification.
准确评估肺结节有助于诊断肺癌的严重程度。在大多数计算机辅助诊断(CADx)系统中,特征提取模块在根据肺结节的不同属性对其进行分类方面起着相当重要的作用。为了精确评估未知肺结节的恶性程度,本文首先提出了一种用于肺结节分类的新型像素值空间统计映射(PVSSM)。通过PVSSM,本研究可以将原始的二维(2D)或三维(3D)肺结节转换为二维特征矩阵,这有助于更好地对肺结节进行分类。为了验证所提出的方法,本研究从LIDC-IDRI数据库中的1006例病例中收集了5385个有效的三维结节。本研究通过奇异值分解(SVD)方法从创建的特征矩阵中提取特征集。使用包括KNN、随机森林和支持向量机在内的几种流行分类器,我们分别获得了77.29%、80.07%和84.21%的分类准确率。此外,本研究还利用卷积神经网络(CNN)来评估结节的恶性程度,灵敏度、特异性和曲线下面积(AUC)分别达到86.0%、88.5%和0.913。实验表明,PVSSM对结节分类有益。