Suppr超能文献

使用卷积神经网络集成方法预测结节的恶性程度。

Predicting Nodule Malignancy using a CNN Ensemble Approach.

作者信息

Paul Rahul, Hall Lawrence, Goldgof Dmitry, Schabath Matthew, Gillies Robert

机构信息

Department of Computer Science and Engineering, University of South Florida, Tampa, Florida, USA.

Department of Cancer Epidemiology, H. L. Moffitt Cancer Center & Research Institute, Tampa, FL, USA.

出版信息

Proc Int Jt Conf Neural Netw. 2018 Jul;2018. doi: 10.1109/IJCNN.2018.8489345. Epub 2018 Oct 15.

Abstract

Lung cancer is the leading cause of cancer-related deaths globally, which makes early detection and diagnosis a high priority. Computed tomography (CT) is the method of choice for early detection and diagnosis of lung cancer. Radiomics features extracted from CT-detected lung nodules provide a good platform for early detection, diagnosis, and prognosis. In particular when using low dose CT for lung cancer screening, effective use of radiomics can yield a precise non-invasive approach to nodule tracking. Lately, with the advancement of deep learning, convolutional neural networks (CNN) are also being used to analyze lung nodules. In this study, our own trained CNNs, a pre-trained CNN and radiomics features were used for predictive analysis. Using subsets of participants from the National Lung Screening Trial, we investigated if the prediction of nodule malignancy could be further enhanced by an ensemble of classifiers using different feature sets and learning approaches. We extracted probability predictions from our different models on an unseen test set and combined them to generate better predictions. Ensembles were able to yield increased accuracy and area under the receiver operating characteristic curve (AUC). The best-known AUC of 0.96 and accuracy of 89.45% were obtained, which are significant improvements over the previous best AUC of 0.87 and accuracy of 76.79%.

摘要

肺癌是全球癌症相关死亡的主要原因,这使得早期检测和诊断成为重中之重。计算机断层扫描(CT)是肺癌早期检测和诊断的首选方法。从CT检测到的肺结节中提取的影像组学特征为早期检测、诊断和预后提供了一个良好的平台。特别是在使用低剂量CT进行肺癌筛查时,有效利用影像组学可以产生一种精确的非侵入性结节跟踪方法。最近,随着深度学习的发展,卷积神经网络(CNN)也被用于分析肺结节。在本研究中,我们自己训练的CNN、一个预训练的CNN和影像组学特征被用于预测分析。使用来自国家肺癌筛查试验的参与者子集,我们研究了使用不同特征集和学习方法的分类器集成是否可以进一步提高结节恶性肿瘤的预测能力。我们从不同模型在一个未见过的测试集上提取概率预测,并将它们组合起来以生成更好的预测。集成能够提高准确性和受试者操作特征曲线(AUC)下的面积。获得了最知名的AUC为0.96和准确率为89.45%,这比之前最好的AUC为0.87和准确率为76.79%有显著提高。

相似文献

1
Predicting Nodule Malignancy using a CNN Ensemble Approach.
Proc Int Jt Conf Neural Netw. 2018 Jul;2018. doi: 10.1109/IJCNN.2018.8489345. Epub 2018 Oct 15.
2
Predicting malignant nodules by fusing deep features with classical radiomics features.
J Med Imaging (Bellingham). 2018 Jan;5(1):011021. doi: 10.1117/1.JMI.5.1.011021. Epub 2018 Mar 21.
3
Hybrid models for lung nodule malignancy prediction utilizing convolutional neural network ensembles and clinical data.
J Med Imaging (Bellingham). 2020 Mar;7(2):024502. doi: 10.1117/1.JMI.7.2.024502. Epub 2020 Apr 6.
4
Convolutional Neural Network ensembles for accurate lung nodule malignancy prediction 2 years in the future.
Comput Biol Med. 2020 Jul;122:103882. doi: 10.1016/j.compbiomed.2020.103882. Epub 2020 Jun 24.
5
Prediction of lung malignancy progression and survival with machine learning based on pre-treatment FDG-PET/CT.
EBioMedicine. 2022 Aug;82:104127. doi: 10.1016/j.ebiom.2022.104127. Epub 2022 Jul 8.
7
External validation of radiomics-based predictive models in low-dose CT screening for early lung cancer diagnosis.
Med Phys. 2020 Sep;47(9):4125-4136. doi: 10.1002/mp.14308. Epub 2020 Jun 23.
8
Lung cancer prediction by Deep Learning to identify benign lung nodules.
Lung Cancer. 2021 Apr;154:1-4. doi: 10.1016/j.lungcan.2021.01.027. Epub 2021 Jan 31.
10
Identification of Benign and Malignant Lung Nodules in CT Images Based on Ensemble Learning Method.
Interdiscip Sci. 2022 Mar;14(1):130-140. doi: 10.1007/s12539-021-00472-1. Epub 2021 Nov 2.

引用本文的文献

3
Are deep learning classification results obtained on CT scans fair and interpretable?
Phys Eng Sci Med. 2024 Sep;47(3):967-979. doi: 10.1007/s13246-024-01419-8. Epub 2024 Apr 4.
4
Integration of artificial intelligence in lung cancer: Rise of the machine.
Cell Rep Med. 2023 Feb 21;4(2):100933. doi: 10.1016/j.xcrm.2023.100933. Epub 2023 Feb 3.
6
A Comprehensive Survey on the Progress, Process, and Challenges of Lung Cancer Detection and Classification.
J Healthc Eng. 2022 Dec 16;2022:5905230. doi: 10.1155/2022/5905230. eCollection 2022.
7
Recognition of Peripheral Lung Cancer and Focal Pneumonia on Chest Computed Tomography Images Based on Convolutional Neural Network.
Technol Cancer Res Treat. 2022 Jan-Dec;21:15330338221085375. doi: 10.1177/15330338221085375.
9
A Radiogenomics Ensemble to Predict EGFR and KRAS Mutations in NSCLC.
Tomography. 2021 Apr 29;7(2):154-168. doi: 10.3390/tomography7020014.
10
Cross-organ, cross-modality transfer learning: feasibility study for segmentation and classification.
IEEE Access. 2020;8:210194-210205. doi: 10.1109/access.2020.3038909. Epub 2020 Nov 18.

本文引用的文献

1
The Relative Performance of Ensemble Methods with Deep Convolutional Neural Networks for Image Classification.
J Appl Stat. 2018;45(15):2800-2818. doi: 10.1080/02664763.2018.1441383. Epub 2018 Feb 26.
2
Learning to detect chest radiographs containing pulmonary lesions using visual attention networks.
Med Image Anal. 2019 Apr;53:26-38. doi: 10.1016/j.media.2018.12.007. Epub 2019 Jan 9.
3
Predicting malignant nodules by fusing deep features with classical radiomics features.
J Med Imaging (Bellingham). 2018 Jan;5(1):011021. doi: 10.1117/1.JMI.5.1.011021. Epub 2018 Mar 21.
4
Using Deep Learning for Classification of Lung Nodules on Computed Tomography Images.
J Healthc Eng. 2017;2017:8314740. doi: 10.1155/2017/8314740. Epub 2017 Aug 9.
5
A novel pixel value space statistics map of the pulmonary nodule for classification in computerized tomography images.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:556-559. doi: 10.1109/EMBC.2017.8036885.
7
Predicting Malignant Nodules from Screening CT Scans.
J Thorac Oncol. 2016 Dec;11(12):2120-2128. doi: 10.1016/j.jtho.2016.07.002. Epub 2016 Jul 13.
8
Cancer statistics, 2016.
CA Cancer J Clin. 2016 Jan-Feb;66(1):7-30. doi: 10.3322/caac.21332. Epub 2016 Jan 7.
9
Screening for lung cancer: U.S. Preventive Services Task Force recommendation statement.
Ann Intern Med. 2014 Mar 4;160(5):330-8. doi: 10.7326/M13-2771.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验