Papapanagiotou Vasileios, Diou Christos, Delopoulos Anastasios
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:1258-1261. doi: 10.1109/EMBC.2017.8037060.
Detecting chewing sounds from a microphone placed inside the outer ear for eating behaviour monitoring still remains a challenging task. This is mainly due the difficulty in discriminating non-chewing sounds (e.g. speech or sounds caused by walking) from chews, as well as due to to the high variability of the chewing sounds of different food types. Most approaches rely on detecting distictive structures on the sound wave, or on extracting a set of features and using a classifier to detect chews. In this work, we propose to use feature-learning in the time domain with 1-dimensional convolutional neural networks for for chewing detection. We apply a network of convolutional layers followed by fully connected layers directly on windows of the audio samples to detect chewing activity, and then aggregate individual chews to eating events. Experimental results on a large, semi-free living dataset collected in the context of the SPLENDID project indicate high effectiveness, with an accuracy of 0.980 and F1 score of 0.883.
通过放置在外耳内的麦克风检测咀嚼声音以监测进食行为仍然是一项具有挑战性的任务。这主要是由于难以将非咀嚼声音(例如语音或行走引起的声音)与咀嚼声区分开来,以及不同食物类型的咀嚼声音具有高度变异性。大多数方法依赖于检测声波上的独特结构,或者提取一组特征并使用分类器来检测咀嚼声。在这项工作中,我们建议使用一维卷积神经网络在时域中进行特征学习以进行咀嚼检测。我们将卷积层网络后跟全连接层直接应用于音频样本的窗口以检测咀嚼活动,然后将单个咀嚼汇总为进食事件。在SPLENDID项目背景下收集的一个大型半自由生活数据集上的实验结果表明该方法具有很高的有效性,准确率为0.980,F1分数为0.883。