Suppr超能文献

基于图像标记特征的低收入和中等收入国家现实生活中以自我为中心图像的食物/非食物分类

Food/Non-Food Classification of Real-Life Egocentric Images in Low- and Middle-Income Countries Based on Image Tagging Features.

作者信息

Chen Guangzong, Jia Wenyan, Zhao Yifan, Mao Zhi-Hong, Lo Benny, Anderson Alex K, Frost Gary, Jobarteh Modou L, McCrory Megan A, Sazonov Edward, Steiner-Asiedu Matilda, Ansong Richard S, Baranowski Thomas, Burke Lora, Sun Mingui

机构信息

Department of Electrical and Computer Engineering, University of Pittsburgh, PA, United States.

Hamlyn Centre, Imperial College London, London, United Kingdom.

出版信息

Front Artif Intell. 2021 Apr 1;4:644712. doi: 10.3389/frai.2021.644712. eCollection 2021.

Abstract

Malnutrition, including both undernutrition and obesity, is a significant problem in low- and middle-income countries (LMICs). In order to study malnutrition and develop effective intervention strategies, it is crucial to evaluate nutritional status in LMICs at the individual, household, and community levels. In a multinational research project supported by the Bill & Melinda Gates Foundation, we have been using a wearable technology to conduct objective dietary assessment in sub-Saharan Africa. Our assessment includes multiple diet-related activities in urban and rural families, including food sources (e.g., shopping, harvesting, and gathering), preservation/storage, preparation, cooking, and consumption (e.g., portion size and nutrition analysis). Our wearable device ("eButton" worn on the chest) acquires real-life images automatically during wake hours at preset time intervals. The recorded images, in amounts of tens of thousands per day, are post-processed to obtain the information of interest. Although we expect future Artificial Intelligence (AI) technology to extract the information automatically, at present we utilize AI to separate the acquired images into two binary classes: images with (Class 1) and without (Class 0) edible items. As a result, researchers need only to study Class-1 images, reducing their workload significantly. In this paper, we present a composite machine learning method to perform this classification, meeting the specific challenges of high complexity and diversity in the real-world LMIC data. Our method consists of a deep neural network (DNN) and a shallow learning network (SLN) connected by a novel probabilistic network interface layer. After presenting the details of our method, an image dataset acquired from Ghana is utilized to train and evaluate the machine learning system. Our comparative experiment indicates that the new composite method performs better than the conventional deep learning method assessed by integrated measures of sensitivity, specificity, and burden index, as indicated by the Receiver Operating Characteristic (ROC) curve.

摘要

营养不良,包括营养不足和肥胖,是低收入和中等收入国家(LMICs)的一个重大问题。为了研究营养不良并制定有效的干预策略,在低收入和中等收入国家的个体、家庭和社区层面评估营养状况至关重要。在比尔及梅琳达·盖茨基金会支持的一个跨国研究项目中,我们一直在撒哈拉以南非洲使用可穿戴技术进行客观的饮食评估。我们的评估包括城市和农村家庭中与饮食相关的多项活动,包括食物来源(如购物、收获和采集)、保存/储存、准备、烹饪和消费(如份量大小和营养分析)。我们的可穿戴设备(佩戴在胸部的“电子按钮”)在清醒时间以预设的时间间隔自动获取现实生活图像。每天记录的图像数量达数万张,经过后处理以获取感兴趣的信息。尽管我们期望未来的人工智能(AI)技术能自动提取信息,但目前我们利用AI将获取的图像分为两个二元类别:有(类别1)和没有(类别0)可食用物品的图像。结果,研究人员只需研究类别1的图像,大大减少了他们的工作量。在本文中,我们提出一种复合机器学习方法来执行这种分类,以应对低收入和中等收入国家现实世界数据中高复杂性和多样性的特定挑战。我们的方法由一个深度神经网络(DNN)和一个通过新颖的概率网络接口层连接的浅层学习网络(SLN)组成。在介绍了我们方法的细节后,利用从加纳获取的图像数据集来训练和评估机器学习系统。我们的对比实验表明,如接收器操作特征(ROC)曲线所示,新的复合方法在敏感性、特异性和负担指数的综合衡量指标方面比传统深度学习方法表现更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cca4/8047062/e6251ab2f840/frai-04-644712-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验