Suppr超能文献

使用统计形状模型进行特定个体肩部肌肉附着区域预测:一项效度研究。

Subject-specific shoulder muscle attachment region prediction using statistical shape models: A validity study.

作者信息

Salhi Asma, Burdin Valerie, Mutsvangwa Tinashe, Sivarasu Sudesh, Brochard Sylvain, Borotikar Bhushan

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:1640-1643. doi: 10.1109/EMBC.2017.8037154.

Abstract

Subject-specific musculoskeletal models can predict accurate joint and muscle biomechanics thereby helping clinicians and surgeons. Current modeling strategies do not incorporate accurate subject-specific muscle parameters. This study reports a statistical shape model (SSM) based method to predict subject-specific muscle attachment regions on shoulder bones and illustrates the concurrent validity of the predictions. Augmented SSMs of scapula and humerus bones were built using bone meshes and five muscle attachment (origin/insertion) regions which play important role in the shoulder motion and function. Muscle attachments included Subscapularis, Supraspinatus, Infraspinatus, Teres Major and Teres Minor on both the bones. The regions were represented by subset of vertices on the bone meshes and were tracked using vertex identifiers. Subject-specific muscle attachment regions were predicted using external set of bones not used in building the SSMs. Validity of predictions was determined by visual inspection and also by using four similarity measures between predicted and manually segmented regions. Excellent concurrent validity was found indicating the higher accuracy of predictions. This method can be effectively employed in modeling pipelines or in automatic segmentation of medical images. Further validations are warranted on all the muscles of the shoulder complex.

摘要

特定于个体的肌肉骨骼模型能够预测准确的关节和肌肉生物力学,从而帮助临床医生和外科医生。当前的建模策略并未纳入准确的个体特异性肌肉参数。本研究报告了一种基于统计形状模型(SSM)的方法,用于预测肩部骨骼上个体特异性的肌肉附着区域,并阐述了预测的同时效度。利用骨骼网格和五个在肩部运动和功能中起重要作用的肌肉附着(起点/止点)区域构建了肩胛骨和肱骨的增强型SSM。两块骨骼上的肌肉附着包括肩胛下肌、冈上肌、冈下肌、大圆肌和小圆肌。这些区域由骨骼网格上的顶点子集表示,并使用顶点标识符进行跟踪。使用未用于构建SSM的外部骨骼集来预测个体特异性的肌肉附着区域。通过目视检查以及使用预测区域与手动分割区域之间的四种相似性度量来确定预测的效度。发现具有出色的同时效度,表明预测具有更高的准确性。该方法可有效地应用于建模流程或医学图像的自动分割。对于肩部复合体的所有肌肉,还需要进一步验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验