Suppr超能文献

结合静态和时态数据分析以预测重症监护中的死亡率和再入院率。

Combination of static and temporal data analysis to predict mortality and readmission in the intensive care.

作者信息

Venugopalan Janani, Chanani Nikhil, Maher Kevin, Wang May D

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:2570-2573. doi: 10.1109/EMBC.2017.8037382.

Abstract

There are approximately 4 million intensive care unit (ICU) admissions each year in the United States with costs accounting for 4.1% of national health expenditures. Unforeseen adverse events contribute disproportionately to these costs. Thus, there has been substantial research in developing clinical decision support systems to predict and improve ICU outcomes such as ICU mortality, prolonged length of stay, and ICU readmission. However, the data in the ICU is collected at diverse time intervals and includes both static and temporal data. Common methods for static data mining such as Cox and logistic regression and methods for temporal data analysis such as temporal association rule mining do not model the combination of both static and temporal data. This work aims to overcome this challenge to combine static models such as logistic regression and feedforward neural networks with temporal models such as conditional random fields(CRF). We demonstrate the results using adult patient records from a publicly available database called Multi-parameter Intelligent Monitoring in Intensive Care - II (MIMIC-II). We show that the combination models outperformed individual models of logistic regression, feed-forward neural networks and conditional random fields in predicting ICU mortality. The combination models also outperform the static models of logistic regression and feed-forward neural networks for the prediction of 30 day ICU readmissions when tested using Matthews correlation coefficient and accuracy as the metrics.

摘要

在美国,每年约有400万人入住重症监护病房(ICU),其费用占国家医疗支出的4.1%。不可预见的不良事件在这些费用中所占比例过高。因此,在开发临床决策支持系统以预测和改善ICU结局(如ICU死亡率、住院时间延长和ICU再入院)方面已经进行了大量研究。然而,ICU中的数据是在不同的时间间隔收集的,包括静态数据和时态数据。静态数据挖掘的常用方法(如Cox和逻辑回归)以及时态数据分析的方法(如时态关联规则挖掘)都没有对静态数据和时态数据的组合进行建模。这项工作旨在克服这一挑战,将逻辑回归和前馈神经网络等静态模型与时态模型(如条件随机场(CRF))相结合。我们使用来自一个名为重症监护多参数智能监测-II(MIMIC-II)的公开可用数据库中的成年患者记录来展示结果。我们表明,在预测ICU死亡率方面,组合模型优于逻辑回归、前馈神经网络和条件随机场的单个模型。当使用马修斯相关系数和准确率作为指标进行测试时,组合模型在预测30天ICU再入院方面也优于逻辑回归和前馈神经网络的静态模型。

相似文献

引用本文的文献

3
Predictive Modeling for Readmission to Intensive Care: A Systematic Review.重症监护病房再入院的预测模型:一项系统评价。
Crit Care Explor. 2023 Jan 6;5(1):e0848. doi: 10.1097/CCE.0000000000000848. eCollection 2023 Jan.
7
Early Hospital Mortality Prediction using Vital Signals.利用生命体征进行早期医院死亡率预测
Smart Health (Amst). 2018 Dec;9-10:265-274. doi: 10.1016/j.smhl.2018.07.001. Epub 2018 Jul 6.

本文引用的文献

1
Novel Data Imputation for Multiple Types of Missing Data in Intensive Care Units.新型数据插补方法可用于 ICU 中多种类型的缺失数据。
IEEE J Biomed Health Inform. 2019 May;23(3):1243-1250. doi: 10.1109/JBHI.2018.2883606. Epub 2019 Apr 16.
9
ICU incident reporting systems.重症监护病房事件报告系统
J Crit Care. 2002 Jun;17(2):86-94. doi: 10.1053/jcrc.2002.35100.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验