Suppr超能文献

重症监护病房再入院的预测模型:一项系统评价。

Predictive Modeling for Readmission to Intensive Care: A Systematic Review.

作者信息

Ruppert Matthew M, Loftus Tyler J, Small Coulter, Li Han, Ozrazgat-Baslanti Tezcan, Balch Jeremy, Holmes Reed, Tighe Patrick J, Upchurch Gilbert R, Efron Philip A, Rashidi Parisa, Bihorac Azra

机构信息

University of Florida Intelligent Critical Care Center (IC), University of Florida, Gainesville, FL.

Department of Medicine, University of Florida Health, Gainesville, FL.

出版信息

Crit Care Explor. 2023 Jan 6;5(1):e0848. doi: 10.1097/CCE.0000000000000848. eCollection 2023 Jan.

Abstract

UNLABELLED

To evaluate the methodologic rigor and predictive performance of models predicting ICU readmission; to understand the characteristics of ideal prediction models; and to elucidate relationships between appropriate triage decisions and patient outcomes.

DATA SOURCES

PubMed, Web of Science, Cochrane, and Embase.

STUDY SELECTION

Primary literature that reported the development or validation of ICU readmission prediction models within from 2010 to 2021.

DATA EXTRACTION

Relevant study information was extracted independently by two authors using the Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies checklist. Bias was evaluated using the Prediction model Risk Of Bias ASsessment Tool. Data sources, modeling methodology, definition of outcomes, performance, and risk of bias were critically evaluated to elucidate relevant relationships.

DATA SYNTHESIS

Thirty-three articles describing models were included. Six studies had a high overall risk of bias due to improper inclusion criteria or omission of critical analysis details. Four other studies had an unclear overall risk of bias due to lack of detail describing the analysis. Overall, the most common (50% of studies) source of bias was the filtering of candidate predictors via univariate analysis. The poorest performing models used existing clinical risk or acuity scores such as Acute Physiologic Assessment and Chronic Health Evaluation II, Sequential Organ Failure Assessment, or Stability and Workload Index for Transfer as the sole predictor. The higher-performing ICU readmission prediction models used homogenous patient populations, specifically defined outcomes, and routinely collected predictors that were analyzed over time.

CONCLUSIONS

Models predicting ICU readmission can achieve performance advantages by using longitudinal time series modeling, homogenous patient populations, and predictor variables tailored to those populations.

摘要

未标注

评估预测重症监护病房(ICU)再入院模型的方法严谨性和预测性能;了解理想预测模型的特征;阐明适当的分诊决策与患者预后之间的关系。

数据来源

PubMed、科学网、Cochrane和Embase。

研究选择

2010年至2021年间报告ICU再入院预测模型开发或验证的原始文献。

数据提取

两位作者使用预测模型系统评价的关键评估和数据提取清单独立提取相关研究信息。使用预测模型偏倚风险评估工具评估偏倚。对数据来源、建模方法、结局定义、性能和偏倚风险进行严格评估,以阐明相关关系。

数据综合

纳入了33篇描述模型的文章。6项研究因纳入标准不当或关键分析细节遗漏而存在较高的总体偏倚风险。另外4项研究因缺乏对分析的详细描述而总体偏倚风险不明确。总体而言,最常见的偏倚来源(占研究的50%)是通过单变量分析筛选候选预测因子。表现最差的模型使用现有的临床风险或急性生理学评分,如急性生理学与慢性健康状况评分II、序贯器官衰竭评估或转运稳定性和工作量指数作为唯一预测因子。表现较好的ICU再入院预测模型使用同质患者群体、明确界定的结局以及随时间分析的常规收集的预测因子。

结论

预测ICU再入院的模型可以通过使用纵向时间序列建模、同质患者群体以及针对这些群体量身定制的预测变量来实现性能优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab52/9829260/19e7d7bd516d/cc9-5-e0848-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验