Suppr超能文献

使用智能地板传感器和监督学习进行跌倒检测。

Fall detection using smart floor sensor and supervised learning.

作者信息

Minvielle Ludovic, Atiq Mounir, Serra Renan, Mougeot Mathilde, Vayatis Nicolas

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:3445-3448. doi: 10.1109/EMBC.2017.8037597.

Abstract

Falls are a major risk for elderly people's health and independence. Fast and reliable fall detection systems can improve chances of surviving the accident and coping with its physical and psychological consequences. Recent research has come up with various solutions, all suffering from significant drawbacks, one of them being the intrusiveness into patient's life. This paper proposes a novel fall detection monitoring system based on a sensitive floor sensor made out of a piezoelectric material and a machine learning approach. The detection is done by a combination between a supervised Random Forest and an aggregation of its output over time. The database was made using acquisitions from 28 volunteers simulating falls and other behaviours. Unlike existent fall detection systems, our solution offers the advantages of having a passive sensor (no power supply is needed) and being completely unobtrusive since the sensor comes with the floor. Results are compared with state-of-the-art classification algorithms. On our database, good performance of fall detection was obtained with a True Positive Rate of 94.4% and a False Positive Rate of 2.4%.

摘要

跌倒对老年人的健康和独立生活构成重大风险。快速可靠的跌倒检测系统可以提高事故幸存者的几率,并应对其身体和心理后果。最近的研究提出了各种解决方案,但都存在重大缺陷,其中之一就是对患者生活的侵扰性。本文提出了一种基于由压电材料制成的灵敏地板传感器和机器学习方法的新型跌倒检测监测系统。检测通过有监督的随机森林及其随时间输出的聚合相结合来完成。该数据库是通过采集28名模拟跌倒和其他行为的志愿者的数据建立的。与现有的跌倒检测系统不同,我们的解决方案具有无源传感器(无需电源)的优点,并且由于传感器与地板一体,完全不会引人注意。将结果与最先进的分类算法进行了比较。在我们的数据库上,跌倒检测取得了良好的性能,真阳性率为94.4%,假阳性率为2.4%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验