Suppr超能文献

我们能制造出足够智能以检测跌倒的地毯吗?

Can we make a carpet smart enough to detect falls?

作者信息

Muheidat Fadi, Tyrer Harry W

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:5356-5359. doi: 10.1109/EMBC.2016.7591937.

Abstract

In this paper, we have enhanced smart carpet, which is a floor based personnel detector system, to detect falls using a faster but low cost processor. Our hardware front end reads 128 sensors, with sensors output a voltage due to a person walking or falling on the carpet. The processor is Jetson TK1, which provides more computing power than before. We generated a dataset with volunteers who walked and fell to test our algorithms. Data obtained allowed examining data frames (a frame is a single scan of the carpet sensors) read from the data acquisition system. We used different algorithms and techniques, and varied the windows size of number of frames (WS ≥ 1) and threshold (TH) to build our data set, which later used machine learning to help decide a fall or no fall. We then used the dataset obtained from applying a set of fall detection algorithms and the video recorded for the fall pattern experiments to train a set of classifiers using multiple test options using the Weka framework. We measured the sensitivity and specificity of the system and other metrics for intelligent detection of falls. Results showed that Computational Intelligence techniques detect falls with 96.2% accuracy and 81% sensitivity and 97.8% specificity. In addition to fall detection, we developed a database system and web applications to retain these data for years. We can display this data in realtime and for all activities in the carpet for extensive data analysis any time in the future.

摘要

在本文中,我们对智能地毯进行了改进,它是一种基于地面的人员检测系统,利用速度更快但成本更低的处理器来检测跌倒。我们的硬件前端读取128个传感器的数据,当有人在地毯上行走或跌倒时,传感器会输出一个电压值。所使用的处理器是Jetson TK1,其提供了比以前更强的计算能力。我们让志愿者行走和跌倒,生成了一个数据集来测试我们的算法。所获取的数据允许我们检查从数据采集系统读取的数据帧(一帧是地毯传感器的一次单次扫描)。我们使用了不同的算法和技术,改变了帧数的窗口大小(WS≥1)和阈值(TH)来构建我们的数据集,随后利用机器学习来帮助判定是否发生了跌倒。然后,我们使用从应用一组跌倒检测算法获得的数据集以及为跌倒模式实验录制的视频,通过Weka框架使用多个测试选项来训练一组分类器。我们测量了该系统的灵敏度、特异性以及其他用于智能跌倒检测的指标。结果表明,计算智能技术检测跌倒的准确率为96.2%,灵敏度为81%,特异性为97.8%。除了跌倒检测,我们还开发了一个数据库系统和网络应用程序,以便多年保存这些数据。我们可以实时显示这些数据,并显示地毯上所有活动的数据,以便在未来的任何时候进行广泛的数据分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验