Das Deepan, Banerjee Rohan, Choudhury Anirban Dutta, Bhattacharya Sakyajit, Deshpande Parijat, Pal Arpan, Mandana Kayapanda M
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:4516-4520. doi: 10.1109/EMBC.2017.8037860.
Phonocardiogram (PCG) or auscultation via a stethoscope forms the basis of preliminary medical screening. But PCG recorded in an uncontrolled environment is inherently noisy. In this paper we have derived novel features from the spectral domain and autocorrelation waveforms. These are used to identify the quality of a PCG recording and accepting only diagnosable quality recordings for further analysis. These features proved to be robust irrespective of variations in devices and in data collection protocols employed to ensure consistent data quality. A freely available, large, diverse, medical-grade PCG dataset was used for creating the training models. Results show that the proposed methodology yields an accuracy score of ~75% on our in-house PCG dataset, collected using a low-cost smartphone-based digital stethoscope.
心音图(PCG)或通过听诊器进行听诊是初步医学筛查的基础。但在不受控制的环境中记录的心音图本质上是有噪声的。在本文中,我们从频谱域和自相关波形中提取了新的特征。这些特征用于识别心音图记录的质量,并且仅接受可诊断质量的记录进行进一步分析。无论设备的变化以及为确保一致的数据质量而采用的数据收集协议如何,这些特征都被证明是稳健的。一个免费可用的、大型的、多样的、医学级心音图数据集被用于创建训练模型。结果表明,所提出的方法在我们使用低成本基于智能手机的数字听诊器收集的内部心音图数据集上产生了约75%的准确率得分。